论文部分内容阅读
选择性激光熔化(SLM)镁合金工艺利用其快速凝固的特点结合镁合金轻量化的优势,对于解决传统镁合金成型技术在生产中的局限性,满足航空、航天、医疗等领域对镁合金材料日益发展的高要求,以及生产出适应范围更广、成型难度更大的高性能镁合金产品具有重要意义。本论文利用选择性激光熔化(SLM)方法对AZ61镁合金成型过程的工艺参数、球化行为、力学性能等进行了系统的研究,应用热等静压、固溶热处理等后处理方式对SLMAZ61镁合金的性能进一步改进,利用量子遗传算法优化的支持向量回归算法(QGA-SVR)建立了表面粗糙度定量预测模型,得到了 AZ61镁合金SLM的最佳成型条件,解决了 SLMAZ61镁合金强韧性及表面粗糙度差的问题,取得了如下研究成果:(1)研究了 SLM过程中工艺参数对AZ61镁合金成型质量、球化程度的影响。研究发现,随着扫描速度与扫描间距的升高(即能量密度降低),表面质量恶化,内部孔隙明显增多,产生球化现象。这是由于能量密度过低,使熔池温度下降,熔体粘度增大,阻碍了熔体向熔池的边缘平滑的流动。增大能量密度有助于减少球化、孔隙等缺陷,但当表面逐渐趋于平整时,马朗戈尼效应(Marangoni effect)和反冲压力(Recoil pressure)会对表面质量造成影响。为了解决能量密度与表面质量的矛盾,建立了不同成型质量与能量密度区间的对应关系模型,得到了 SLMAZ61镁合金的最佳成型的能量密度范围为125~250 J/mm3,与此对应的最优表面粗糙度为7.5μm。(2)通过对SLM AZ61镁合金球化行为的热力学、动力学及镁熔滴在基板上铺展/凝固的竞争行为分析,建立了 SLM过程AZ61镁合金熔池铺展/凝固模型。研究表明,在SLM过程中,Mg和其他几种常见金属熔滴在毛细力的作用下铺展,同时受到惯性力的阻碍作用。熔滴的凝固受控于元素扩散及熔滴温度、基板温度、固相线温度三者间的温度梯度。抑制球化的关键是控制凝固时间长于铺展时间,使金属熔体在凝固之前有充足时间铺展。AZ61镁合金熔体的凝固曲线斜率大于Mg熔体,表明AZ61熔体凝固时间对温度变化更敏感。根据熔滴铺展/凝固动力学模型,计算得到理论上控制SLMAZ61球化的最佳温度为900℃(1173K),此时凝固时间长于润湿时间,可以最大程度减少球化,降低表面粗糙度,实现致密成型。SLM AZ61的孔隙形状、尺寸分别受扫描速度、扫描间距的影响,相对密度随扫描速度、扫描间距减小而增大。研究得到SLM AZ61最佳工艺参数为激光功率P=150W、扫描速率v=400mm/s、扫描间距H=0.06mm及层厚T=0.04mm,此时样品相对密度最高,达到99.4%;SLMAZ61的相对密度与Al元素的固溶有关,调节能量密度控制溶质捕获效应,可以提升SLM镁合金的相对密度。除此之外,利用基于量子遗传算法优化的支持向量回归算法(QGA-SVR)建立了 SLMAZ61镁合金的表面粗糙度预测模型,预测准确率达到94%,为工程应用奠定了理论基础并有效解决了前期试验成本高的问题。(3)SLMAZ61镁合金晶粒细化为1.61~2.46μm,显微组织由等轴的α-Mg晶粒和沿晶界分布的网状β-Mg17Al12组成;力学性能研究表明,最佳工艺参数下,极限抗拉强度为287MPa,屈服强度为233MPa,较铸态分别提升了 93%和135%,延伸率为3.12%。通过显微组织以及断口形貌分析,内部孔隙、沿晶界析出的β-Mg17Al12为限制塑性的原因。(4)热等静压(HIP)对闭合SLM镁合金内部孔隙、提升塑性有重要作用。HIP后,AZ61镁合金致密度接近100%,且在保温过程中发生了β-Mg17Al12相的溶解。350℃、103MPa、3h 的 HIP 处理后,网状 β-Mg17Al12分解,并有大量块状β-Mg17Al12析出;450℃、103MPa、3h的HIP下第二相完全溶解。350℃、450℃HIP下,极限抗拉强度分别为279MPa、274MPa,屈服强度分别为198MPa和126MPa,延伸率分别为5.5%和8.2%,塑性较SLM镁合金分别提升了 77%和165%,在保留极限抗拉强度的情况下,塑性得到了极大的改善。研究发现在采取相同压力闭合孔隙的条件下,第二相溶解越完全,塑性越高。同时,通过计算明晰了 SLM+HIP下AZ61的主要强化机制。(5)固溶热处理对SLM AZ61镁合金塑性有改善作用,最佳方式为分段加热模式。通过330℃、350℃、380℃、410℃下不同时间的固溶热处理,发现低于410℃时,β-Mg17Al12由沿晶界析出的网状分解形成块状,溶解情况随时间变化不大;410℃、2h后β-Mg17Al12几乎完全溶解,且溶解速度很快,表明最佳固溶温度为410℃。固溶热处理导致晶粒粗化,330℃~410℃,晶粒尺寸由3.3±1.3μm增长到29.2±3.7μm,410℃、10h后晶粒尺寸无明显变化,为29.4±2.5μm,但远小于铸态水平。随着固溶温度升高,SLM AZ61镁合金强度下降,塑性提升。410℃时抗拉强度为240±5MPa,屈服强度降低,为124±6MPa,但延伸率升高到了 5.9%,较SLM原始态AZ61镁合金升高了 84%,塑性得到改善。在最佳固溶温度410℃下对5min、10min、15min、20min、30min、1h、2h、15h第二相的溶解行为进行研究,建立了第二相分解的动力学模型。(6)将SLM AZ61镁合金固溶热处理与HIP工艺对比,发现HIP不仅可以闭合内部孔隙,同时发生β-Mg17Al12的溶解,消除了孔隙与β-Mg17Al12对SLM镁合金塑性的影响,使塑性显著提升。塑性改善的最佳后处理方式为450℃、103MPa下进行3小时的HIP处理。最后利用研究得到的SLMAZ61最佳工艺参数组合,试制了某企业用于航空某装备的AZ61镁合金的实际零件。结果显示,SLM制备AZ61镁合金较传统切削加工全工艺过程简化了约40%、加工时间减少了约80%、成本下降了约20%,显示了 SLM镁合金在航空航天等重大领域有着巨大的发展潜力。