【摘 要】
:
工业的发展是建设社会主义现代化强国的关键,近些年我国工业生产规模不断地扩大,生产设备也愈加精密化,同时得益于更加便捷的数据采集存储技术,大量的生产过程历史数据被记录下来,这为基于数据驱动的故障诊断技术创造了良好的发展条件。工业生产过程的数据一般具有高维、动态的特点,因此从测量空间提取数据的有效特征、考虑数据的时序相关性是十分重要的。基于上述问题,本文进行了以下研究:(1)提出一种基于马氏距离的局部
论文部分内容阅读
工业的发展是建设社会主义现代化强国的关键,近些年我国工业生产规模不断地扩大,生产设备也愈加精密化,同时得益于更加便捷的数据采集存储技术,大量的生产过程历史数据被记录下来,这为基于数据驱动的故障诊断技术创造了良好的发展条件。工业生产过程的数据一般具有高维、动态的特点,因此从测量空间提取数据的有效特征、考虑数据的时序相关性是十分重要的。基于上述问题,本文进行了以下研究:(1)提出一种基于马氏距离的局部敏感判别分析(LSDA-M)方法应用于工业过程的故障诊断。在故障诊断的特征提取阶段,使用了局部敏感判别分析(LSDA)方法,该方法可以挖掘高维数据中的局部几何结构,并且引入了判别信息,使用了平衡因子平衡类内类间的权重。在构建邻接图的步骤中,本文使用马氏距离在高维空间中对近邻点进行度量,排除了数据变量之间的相关性干扰,从而得到更好的特征提取效果。(2)考虑到当工业生产为动态过程时,数据的观测变量之间存在时序相关性,提出了基于马氏距离的动态局部敏感判别分析(DLSDA-M)方法。通过在监测矩阵中加入过程变量的时间滞后数据,构建了原始数据的增广矩阵,再使用LSDA-M进行特征提取,从而使系统的动态行为被准确描述。(3)本文在模型应用过程中,通过Akaike信息准则确认所提模型的最佳降维阶次,使用Ada Boost算法集成决策树进行故障归类。最后以合成数据案例和田纳西-伊斯特曼过程(TEP)数据为研究对象,从多个指标出发对所提方法进行全面的验证和分析,证明了所提方法的有效性。
其他文献
卵巢早衰(premature ovarian failure,POF)属于妇科内分泌疾病,临床治疗较为困难。POF的发病机制复杂,中医认为与肾虚、冲任虚衰等有关,治疗当以补肾填精、调理冲任为主,临床也需辩证施治。西医则认为与遗传、免疫、环境、医源性因素等有关,治疗方法以激素替代疗法、促排卵疗法、干细胞移植等为主,临床中POF的治疗以中西医结合为常见方案。现从中西医两个角度出发,对各自的发病机制给予
SLAM(Simultaneous Localization and Mapping,同时定位与建图)是智能移动机器人实现自主化的关键技术之一。随着服务机器人市场需求日益扩大,SLAM技术得到了更多研究者的关注。目前大多数SLAM算法都是基于场景刚性假设进行设计的,因此动态环境泛化能力差。此外,单一传感器无法满足复杂环境的需要,通常与其他传感器结合以提高系统的鲁棒性。本文针对以上问题,对视觉惯性S
随着电子设备规模的增大与电路结构复杂性的增加,模拟电路的测试和故障诊断越来越困难。近年来,研究人员试图从数据和模型两个角度来研究测试方法以提高模拟电路故障诊断的准确率。通过对电路可测性的研究,学者们发现测试点的选择是一种有效提升数据分辨率的手段。目前对测点选择的研究大多是基于整数编码表进行的,但由于整数编码表是通过设定电压阈值来判断故障的可分性,这种方法对于一些表现相近的故障无法精确的度量;且目前
平面对称群是欧几里得平面等距线的不连续子群,在平面内两个线性独立的等距平移下表现不变性。因其在晶体学、化学、物理、图案设计等方面的应用价值,平面对称群受到广泛的关注。人们可以凭借与生俱来的感知对称的能力,对17种平面对称群图案进行分类。然而,在过去的几十年里,平面对称群图案的自动分类仍然是一个艰巨的挑战。本文的目的是为了找到一种自动而有效的方法从图片中识别这17种平面对称群结构。本文所做工作如下:
随着互联网和移动设备的发展,线上社交媒体用户数激增,使得在线社交网络(Online Social Network,OSN)已经具有相当复杂的自身特性和行为模式,吸引了很多研究学者对社交网络的特性、模式及规律等进行分析研究。但由于在线社交网络具有庞大的规模,同时涉及到隐私访问限制等问题,使得获取完整的大规模在线社交网络数据具有一定困难。因此,很多研究都是基于社交网络的样本网络进行实验。样本网络的质量
目的 分析社区老年人肌肉减少症(肌少症)的患病率及影响因素。方法 检索PubMed、Embase、The Cochrane Library、Web Of Science、CINAHL、维普数据库、中国知网、万方数据库、中国生物医学文献服务系统等数据库从建库至2021年7月关于社区老年人肌少症患病率及影响因素的相关文献,采用RevMan 5.3软件对社区老年人肌少症患病率及影响因素进行meta分析。
旅行商问题是一种在组合优化领域广泛研究的NP-hard问题,目前研究学者已经开发了许多不同的群体智能和近似算法来解决该问题。但到目前为止,关于旅行商问题多解优化的相关研究较少,因此本课题主要针对蚁群优化算法进行相应的改进以更好地解决多解旅行商问题。在群体智能算法方面,本文主要总结群体智能算法的结构与特性。在多解旅行商问题方面,本文主要整合相关测试集及评价指标用于算法的有效性验证,并提出一种基于蚁群
城市是典型的动态复杂系统,个体间以及个体与外部环境间存在的较强的非线性相互作用和由此产生的涌现行为是复杂城市系统的重要特征。城市的正常运作有赖于大量个体的高效交互,因而揭示居民间时空交互接触模式所蕴含的普适规律对于包括流行病传播、城市规划及交通工程等各类城市研究至关重要。然而过去由于数据采集的限制,学者们难以获取高时空精度的个体轨迹与交互数据。近年来随着信息通信技术的发展,手机已然成为某种意义上的
一直以来,社团划分和聚类分析被认为是相似的,其目的都是将相似的对象分为一组,但近几十年来都被分开研究,缺少一个统一的框架去处理这两类问题,其中一个重要原因在于向量数据和拓扑数据之间的差异。异质性是网络拓扑中社团结构和向量数据中簇结构存在的共同条件,它表示数据的重要属性间存在差异,相比之下,均质性的晶格网络或随机均匀分布的数据点则不存在团簇结构。以异质性为基础,本文将向量数据中密度的概念扩展至拓扑数
随着技术的进步,工业过程向着智能化发展。由于设备一般工作在正常状态,只是在很短的时间内处于故障状态,导致采集的各类故障数据呈现出不平衡的特点,给故障诊断带来了困难。同时,采集到的数据还具有不平衡、非线性、强耦合和具有流形结构等特点。如何对不平衡故障样本进行数据生成并提取有效特征,成为提高诊断精度的重要因素。流形学习算法相比与传统故障诊断方法,能保留数据的局部结构信息,提取与故障相关的主要特征。局部