论文部分内容阅读
数据挖掘是近年来随着数据库和人工智能技术的发展而出现的一种全新信息技术,也是计算机科学与技术,尤其是计算机网络的发展和普遍使用所提出的而且迫切需要解决的重要课题。数据挖掘是指从数据中提取模式的过程,数据挖掘的提出,让人们最终有能力认识数据的真正价值,即蕴藏在数据中的信息和知识。数据挖掘技术的产生,使得用户可以从大量的数据中发现隐含的规律,从而为决策提供更可靠的依据。数据挖掘必须建立在结构化良好的数据基础之上,传统的数据库都有一定的数据模型,可以根据模型来具体描述特定的数据,同时可以很好的定义和解释相关的查询语言。由于web上存在许多半结构化数据,即便在web上得到一些相关数据,将其用于挖掘和分析也是相当困难的,因此,面向web的数据挖掘要比面向单个数据仓库中的数据挖掘要复杂的多。由于Internet和WWW的广泛应用,出现了基于异构数据源的数据挖掘,如文档数据挖掘、时间序列数据挖掘、电子商务系统中的数据挖掘。伴随数据库技术的发展,多媒体数据库的数据挖掘、空间数据库的数据挖掘等也引起了许多人的关注。Internet的迅猛发展,尤其是Web的全球普及,使得Web上信息量无比丰富。通过对Web的挖掘,可从Web页面中提取所需的知识:对总的用户访问行为、频度、内容的分析,可得到关于群体用户访问行为和方式的普遍知识,用以改进Web服务设计。更重用的是,通过对这些用户特征的理解和分析,有助于开展有针对性的电子商务活动。随着数据挖掘和万维网技术的结合,使得从收集到的访问Internet网页的网站日志记录中进行数据挖掘成为可能。将数据挖掘技术应用于Web日志记录,来发现用户访问Web页面的模式,便形成了Web访问模式挖掘。它对于优化站点结构、为不同类别的用户提供个性化服务,有效地实现信息获取和信息推送是非常必要的。Web访问模式挖掘是目前数据挖掘领域的热点课题之一,也是Web日志挖掘的主要目标之一,本文的研究目的是发现更多有意义的序列模式。本文系统地阐述了从数据挖掘、Web数据挖掘到Web日志挖掘整个过程。通