论文部分内容阅读
本文基于L-稳定的Runge-Kutta方法构造Riemann-Liouville分数阶导数的高阶逼近格式,构造了求解非线性分数阶微分方程的L-稳定的Runge-Kutta方法,并给出了该方法的相容性、收敛性和稳定性分析.选取该方法中的Lobatta///C方法,Radau/A方法和单对角隐式Runge-Kutta方法并结合短记忆原则进行了数值试验,试验结果表明了这些方法的有效性。