由三态跃迁机制产生的两种神经放电节律

来源 :陕西师范大学 | 被引量 : 0次 | 上传用户:mengshenabc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通过慢性结扎坐骨神经制备的外周实验性神经起步点模型在有关神经放电节律模式及其转迁中得到了一系列的应用。迄今,研究人员在实验性神经起步点这个实验模型中已经发现并记录到了丰富的神经放电节律模式,并运用非线性动力学的方法研究自发神经放电的内在动力学规律。随机共振现象的发现和提出,使得人们认识到噪声可以与系统协同作用而有利于系统信号的输出。神经电活动中也存在经随机共振或随机自共振等机制产生的自发放电节律,提示噪声对神经元的放电活动具有重要的影响,因此可能参与神经系统的信息处理过程。研究神经放电节律及噪声在神经系统运动中的作用有助于发现神经运动的一般规律以及噪声在生命活动中的存在和意义。神经系统随机运动的运动规律和产生机制一直是一个重要的研究课题。本文介绍了实验性起步点中两种鲜见的三态跃迁节律,并借助非线性动力学数学模型作为理论分析工具对其运动性质以及产生机制进行了初探。 主要实验结果如下: 1.在实验性神经起步点两例神经单纤维上分别观察并记录到两种三态跃迁节律,分别表现为静息、周期1、周期2簇放电随机交替出现以及静息、周期2、周期3簇放电随机交替出现。 2.确定性Chay模型数值仿真可以得到这样的加周期分岔:从静息到放电(从静息到周期m(m=1,2))、再从一种放电到另一种放电(从周期m到周期m+1(m=1,2))的两个分岔点可以非常接近,v。的小范围变动可以使得神经系统有三种不同的状态。 3.从静息到放电(从静息到周期m(m=1,2))、再从一种放电到另一种放电(从周期m到周期m+1(m=1,2))的两个分岔点非常接近地加周期分岔背景下,加入适当的噪声(D=0.005)数值仿真得到与实验模型中类似的两种三态跃迁节律。揭示三态跃迁节律的产生机制为分岔点附近适当的噪声对使系统在三种状态之间随机跃迁。 4.噪声对神经元运动状态有重要的影响作用。分岔点附近(分岔点双侧)噪声的扰动使得神经元系统在三种状态间随机跃迁,形成三态跃迁节律。5.噪声强度的改变使得神经元的运动状态发生改变。在同样的分岔背景下,同样的Vc区间,当噪声强度为D=0.005时,神经系统的运动状态表现为三态跃迁;当噪声强度为D=0.0001时,神经系统的运动状态表现为两态跃迁。这说明噪声对系统运动状态的影响作用不仅体现在噪声的有无,而且体现在噪声强度的大小。 以往实验性神经起步点中的随机运动是在两种状态之间的跃迁,而本研究发现并记录到的两种节律为神经系统在三种状态之间的跃迁。理论分析揭示当神经元系统接近从静息经分岔到放电的临界状态,且从静息到周期m的分岔点与从周期m到周期m+1的分岔点非常接近时,在噪声的作用下系统运动在静息、周期m、周期m+1三种状态之间随机跃迁,从而形成了这两种三态跃迁节律。 基于三态跃迁节律的随机共振或者随机自共振还有待研究,三态跃迁节律的生理学意义以及对三态跃迁节律的性质还需要进一步深入研究。
其他文献
保持问题是算子代数研究的一个重要领域.本文主要研究了对称算子空间上保持Jordan三重零积以及B(X)上保持Jordan积非零幂等性的可加映射.首先证明了在对称算子空间上保持Jordan三重零积的可加映射φ是双边保持一秩算子的,则该映射也是双边保相邻的,从而存在非零常数c以及线性或共轭线性可逆算子A:H→满足AAt=I使得(?)(T)=cATAt,VT∈(?)y(H).其次研究了B(X)上双边保持
熵是量子信息理论的关键概念之一,提供了一种方法用来度量信息系统中所包含的不确定性.目前已经成为量子信息理论中的一个热门分支,有着重要的研究地位.本文在已有的理论基础上,研究了熵的稳定性和量子态的酉等价,全文共分三章,具体内容如下: 第一章主要介绍了本文用到的一些符号以及相关基本概念和结论(如优化,熵,可分态等),同时得到了优化和熵两者之间一种非常重要的关系,即若在优化的前提条件下两个向量具有
算子乘积不仅在算子理论中起着十分重要的作用,而且在数学物理、信号处理以及数值分析等领域有着重要应用.最近,Corach和Maestripieri在文献[1]中,对所有投影乘积算子组成的集合进行了刻画.那么一个算子可以表示成两个投影乘积算子的充要条件是什么?另外,值域包含定理给出了一个算子可以表示成两个算子乘积的几个等价条件,由此也启发我们对保持值域包含关系的映射进行研究.首先定义了R序不变子空间的
20世纪60年代,人们发现了双钙钛矿型化合物,由于其特殊的结构和各种奇异的电子特性,最近又吸引了许多科研人员做了大量有意义的基础性与应用性研究,包括处于磁场中时磁电阻显著下降,掺杂对材料能带的影响等等。我们目睹了人们对双钙钛矿这种过渡金属氧化物的研究兴趣。有序双钙钛矿结构为A2BB’O6(其中A是碱土元素Mg、Ca、Sr、Ba或稀土元素La、Ce、Nd、B/B‘为不同的过渡金属元素,如B=Gr、M
初中地理教学方法多种多样,其中体验式教学有利于构建和谐的师生关系,激发学生学习的自主性,更好地挖掘其学习潜力。教师在教学实践中应做好体验式教学相关理论的学习,把握该教学方法的应用关键,并结合具体教学内容做好应用过程的设计与实施,使初中地理教学质量提升到一个新的高度。
含氮多环化合物普遍存在于有机药物、天然产物以及有机功能材料中,因此对这种杂环骨架的构建引起了化学工作者们极大地关注。基于可见光具有绿色环保、简单易得、可持续发展的显著优点,可见光催化在有机合成方面已经有了广泛的研究,与传统的有机合成方法相比,可见光催化的有机合成方法确实表现出了绿色、环境友好的优势。通过可见光催化的方法来构建含氮多环化合物将是一种绿色、环境友好的策略。本论文通过可见光催化烯酰胺类化
CuAO催化产生的H2O2是否参与乙烯诱导不定根发生至今还不清楚。本文通过药理学实验、组织化学检测以及激光扫描共聚焦显微镜技术,研究了乙烯诱导绿豆插条下胚轴不定根发生过程中CuAO催化产生的H2O2及NO的作用。所得主要结果如下: 1.乙烯合成前体ACC明显增加不定根数目,而ACC氧化酶抑制剂CoCl2及乙烯受体抑制剂DDC显著抑制ACC促进不定根发生的作用,表明ACC的作用相当于乙烯的作用
本文主要研究了套代数上在零积所确定的子集中保持Jordan乘积与保持ζ-Lie积的线性映射,具体内容如下: 第一章主要介绍了文中用到的一些符号以及概念(如套代数,同构,反同构,Jordan同构,ζ-Lie同构)等. 第二章主要对套代数之间的Jordan同构进行了刻画.证明了套代数上在零积所确定的子集中保持Jordan乘积的线性酉双射是同构或反同构. 第三章主要讨论了当ζ≠0,1时
谱对与Tiling对存在某些确定的联系,两者在小波理论、离散Fourier分析与三角逼近理论中有着直接的应用.谱集与Tile以及谱与Tiling集之间的关系是相当神秘的,有几个猜测主要针对两两之间的联系,以便澄清它们中的关系.在共轭Fuglede猜想中,已经知道存在的集合Ω与D必须满足m(Q)m(D)=1.这对于共轭Fuglede猜想来说是一个必要条件.在探讨谱与Tilings之间的关系时,所涉及
本文主要研究一类具有毒素的非均匀恒化器模型:边界条件为初始条件为s(x,0)=s0(x)≥0, u(x,0)=u0(x)≥0,(?)0,x∈Ω, u(x,0)=u0(x)≥0,(?)0, p(x,0)=p0(x)≥0,(?)0,xΩ. 通过运用不动点指标原理探究了该模型正平衡态解的存在性,利用分歧理论、摄动理论讨论了正平衡态解的分歧结构,稳定性和毒素对共存解个数及稳定性的影响. 本文主