恒化器模型相关论文
本文主要研究一类具有毒素的非均匀恒化器模型:边界条件为初始条件为s(x,0)=s0(x)≥0, u(x,0)=u0(x)≥0,(?)0,x∈Ω, u(x,0)=u0(x)≥0,(?)0, p(x,0)=p0......
恒化器模型是生物数学中重要的模型之一。利用恒化器连续培养微生物已成为微生物学中的一项重要的研究手段;是原理和应用之间的一......
近几十年来,各种各样的生物模型一直被数学家和生物学家所关注.特别地,研究空间分布不均匀是一个非常热门的课题,比如考虑带有扩散......
该论文基于当前生物学模型,特别是恒化器模型的研究现状,深入系统的研究了时滞和扩散方程描述的几类恒化器系统的渐近性态,该文的......
恒化器是一类描述开放生态系统和实验室生物反应器中物种竞争的基本数学模型.本文研究如下具有拥挤效应的非均匀恒化器:边界条件为......
本文主要利用不动点指标理论、分歧理论以及摄动理论研究一类具有外加抑制剂的非均匀恒化器模型:边界条件为初始条件为共存解的存在......
本文主要利用广义最大值原理、不动点指标理论及分歧理论研究一类具有外加毒素的单营养双竞争物的非均匀恒化器模型:St=dSxx-auf1(S......
本文通过向一类具有可替代营养的恒化器模型中引入环境白噪声干扰,建立了一类新的随机恒化器模型,利用微分方程的相关理论、方法结......
目前,学者们总是利用数学技术与方法去解决工程、计算科学以及物理和生物科学方面的问题,学科间的互相渗透与交融日益剧增,数学生......
chemostat模型(又称恒化器模型)广泛应用于微生物培养、废料处理、生物制药、食品加工等领域,只要适当地调节恒化器内各个反应物的......
Lotka-Volterra模型和恒化器模型是两类重要的生物数学模型.Lotka-Volterra模型是种群动力学研究的核心内容,它在生态学,特别是动植......
本文主要研究两个恒化器竞争模型,首先针对人体口腔异味的现象,为了消除异味必须要通过外界药物的治疗.为此,运用恒化器建模方法,......
学位
恒化器是微生物人工培养中的一个实验装置,被用来提供一个控制环境,在这个环境中可以研究微生物种群在营养限制的条件下的生长.本文......
2003年D.Angeli与EduardoD.Sontag教授合作,在IEEETransactionsOnAutomaticControl上发表了题为《MonotoneControlSystems》的学术......
Chemostat又叫恒化器,是重要的生物数学模型,是一个用于单种或多种微生物种群连续培养的实验装置.恒化器模型不仅是简化了的湖泊模型,......
当今,数学生物学已经成为一个受到广泛关注的热门学科.人们对许多生命现象建立了数学模型,并应用现代数学理论不断地对其加以研究,取得......
本文考虑一个既含有捕食被捕食关系又有竞争关系的环状模型,当不同种群具有不同稀释率,且消耗率中的参数(i=l,2,3)分别取常数和线性函......
生物学家们目前已经对许多生命现象建立了数学模型,在微生物种群连续培养方面主要是恒化器模型,关于变消耗率竞争系统的模型虽已有很......
时滞微分方程理论在诸如生物技术、药物动力学、物理、经济、控制、种群动力学、流行病学等领域发挥着不可忽视的作用.尤其在最近......
时滞微分方程和脉冲微分方程模型在描述生物动力学方面起到了不可忽视的作用.通过对数学模型的构建和研究使人们对种群之间及种群......
恒化器是一个连续培养微生物的实验装置,通过控制其输入和输出量来了解物种之间的相互作用。这个装置在生物数学领域的研究中起着重......
本文主要运用脉冲微分方程理论和时滞微分方程理论研究了两类恒化器模型(双营养基模型和营养基循环模型),主要考虑这两模型的微生物......
生物数学模型的最终性态是研究的重点,只有研究模型的最终性态,才能掌握种群随着时间而演变的规律。人们可以根据推断的结果,预测......
本文建立了一类SEIS传染病模型与一类具有状态反馈脉冲控制的恒化器模型,运用自治微分系统以及状态反馈脉冲微分系统的相关理论及定......
本文研究了污染环境下具有脉冲输入的竞争培养模型.利用乘子理论和小振幅扰动法,我们得到了种群灭绝周期解全局渐近稳定的充分条件......
考察人体口腔异味现象,利用恒化器建模方法,改进了人体口腔系统中微生物种群关系的模型,利用Lyapunov稳定性理论分析了系统的平衡......
考虑一类双资源和两种微生物且具有时滞和脉冲输入的恒化器模型,证明了微生物灭绝周期解的存在性,并得到该周期解全局吸引性的临界......
本文研究了污染环境下具有脉冲输入的竞争培养模型.利用乘子理论和小振幅扰动法,我们得到了种群灭绝周期解全局渐近稳定的充分条件......
本文建立具有一般功能反应函数和分布时滞的恒化器模型。首先证明了模型解得正性和有界性,然后计算得到基本再生数,分析了细菌灭绝......
本文研究一类具有增长时滞及脉冲输入的Beddington-DeAngelis恒化器模型,得到了微生物灭绝周期解存在和全局吸引的条件,并证明了系......
考虑了一类具有增长时滞及脉冲输入的被污染的Beddington-DeAngelis恒化器模型,获得微生物灭绝周期解全局吸引的条件,并运用脉冲时......
讨论了污染的竞争(包括种内与种间)恒化器模型种群的永久持续生存性;当种群只有种内竞争而无种间竞争时,也考虑了种群的控制问题,......
给出了一类脉冲输入培养基的捕食者一食饵恒化器模型。获得了一个食饵(或捕食者)和培养基共存的正周期解。并且对这个周期解具有侵入......
讨论一类带有Beddington-DeAngelis型功能反应函数的非均匀恒化器模型解的存在性及稳定性.首先利用上下解方法与极值原理得到恒化......
在齐次Neumann条件下研究一类具有能量维持扩散的恒化器模型的稳定性.首先利用最大值原理和Harnack不等式给出平衡态方程正解的先......
利用Floquet理论和小振幅扰动的方法.证明利用脉冲控制可保证一类污染环境下恒化器模型周期解的全局渐近稳定性。......
讨论了污染恒化器模型中种群的一致持续生存及解的全局吸引性;当营养输入与毒素输入均为周期变化且有共同周期时讨论了种群的周期共......
讨论了一类带有毒素生产的恒化器模型,获得了模型各类平衡点存在及稳定的充要条件,通过构造Dulac函数和Lyapunov函数和运用极限系统......
研究了一个叫周期环境的具有年龄结构的恒化器模型,阈值R0被一个特殊线性方程的基解矩阵所定义,全局动力学被阈值岛决定,即:如果R0〈1......
研究了污染环境下具有脉冲输入环境毒素的恒化器模型。利用乘子理论和小振幅扰动法,得到当脉冲输入营养物小于一个临界值或环境毒......
研究了一类质粒载体的微生物(plasmid—bearing organism)与质粒自由的微生物(plasmid-free organism)之间相互竞争的恒化器模型的平衡......
考虑了一类带有脉冲的Ivlev-型恒化器模型,利用小振幅扰动的技巧,给出这类系统持久性的充分条件.......
在具有抑制剂的恒化器竞争模型中考虑时滞营养循环的作用,得到系统有界的充分条件....
<正>In this paper,we consider a new Monod type chemostat model with time delay and impulsive input concentration of the ......
研究了一类带周期脉冲输入的恒化器模型.利用Floquet乘子理论,我们得到了如果R1〈1,那么微生物灭绝周期解是全局渐近稳定的.同时得......