【摘 要】
:
微生物电合成(Microbial electrosynthesis,MES)技术是一种绿色环保可持续的新型学科交叉前沿技术,其可以利用可再生电力为微生物提供还原力或调控胞内代谢,从而促进微生物细胞利用葡萄糖或最理想的CO2为底物合成目的代谢产物。目前MES系统中所用的宿主菌株大多缺乏高效的基因编辑手段,且生成的产物多为C3到C4以下,相对附加值较低。为了能够更高效地生产高附加值产物,本文中我们首先
论文部分内容阅读
微生物电合成(Microbial electrosynthesis,MES)技术是一种绿色环保可持续的新型学科交叉前沿技术,其可以利用可再生电力为微生物提供还原力或调控胞内代谢,从而促进微生物细胞利用葡萄糖或最理想的CO2为底物合成目的代谢产物。目前MES系统中所用的宿主菌株大多缺乏高效的基因编辑手段,且生成的产物多为C3到C4以下,相对附加值较低。为了能够更高效地生产高附加值产物,本文中我们首先初步筛选了目前本实验室常用的5种合成生物学工程菌株,分别是酿酒酵母BY4741产对羟基苯甲酸甲酯、大肠杆菌JM109产1,3-丁二醇(1,3-Butanedio,1,3-BDO)、酿酒酵母YJZ08产游离脂肪酸(Free fatty acid,FFA)、解脂耶氏酵母2624产法尼烯及谷氨酸棒状杆菌AC产肝素前体Heparosan与微生物电合成系统耦合的适配性,发现除对羟基苯甲酸甲酯的产量出现下降外,其余FFA、1,3-BDO、法尼烯、Heparosan的产量均有不同程度提高。这表明微生物电合成技术针对包括内源、外源多种代谢途径的高附加值产物具有一定普适性的促进作用。之后我们选取了酿酒酵母YJZ08和大肠杆菌JM109进行了相关胞外电子受体蛋白的异源表达以探究MES对不同菌株的差异化影响的原因并最终希望在MES实现提产的效果。之后针对酿酒酵母和大肠杆菌两种模式菌株进行了进一步的电活性化改造以提高其生产高附加值化合物的产量。通过不同组合异源表达Shewanella.oneidensis MR-1来源的Mtr ABC+cym A+fcc A和Geobacter sulfurreducens来源的Omc S和Omc Z细胞色素蛋白及信号肽筛选等相关的基因工程优化,我们最高使FFA和1,3-BDO的产量分别提高了约32%和20%,达到约481mg/L和2.1g/L。通过进一步的测定胞内辅酶NAD(P)H/NAD(P)+变化、电化学分析,尤其是对于最佳提产菌株的Q-TOF代谢组学分析,我们发现MES对胞内代谢还原力的提升效果可能是作用于胞内所有涉及还原力的代谢通路而对所希望提产的特定目标产物如1,3-BDO、FFA较为缺乏选择性。虽然理论上根据级联放大作用,越接近代谢途径终端的代谢产物的产量提升效果会越明显,但由于途径中不同酶活性的高低不同,彼此之间的适配性不总能保证整体代谢链的动态平衡,从而可能导致新的限速步骤出现,甚至增加了副产物的代谢通量。因此在选择MES适用底盘菌株或产物时,应重点考虑相关途径中是否有关键性中间产物或限速步骤,以更好地利用MES技术辅助微生物增产高附加值产物。
其他文献
随着工农业及消费品市场的迅猛发展,有机微污染物(OMPs)在全球范围内的水源中被频繁检测到。在众多的OMPs中,内分泌干扰物(EDCs)占据相当一部分,其中有机原料双酚A(BPA)和增塑剂邻苯二甲酸酯类(PAEs)污染物因塑料制品的滥用而对环境造成了严重影响。尽管天然水环境中EDCs的浓度仅为痕量水平,但是它们可以在生物体内富集而造成诸多严重的疾病。近年来,吸附法被认为是最有潜力去除水中EDCs的
肝癌是一种常见的具有高死亡率的恶性肿瘤疾病。我国是肝癌大国,肝癌发病人数和死亡人均高于世界平均水平。在肝癌的诊断中,通常采用超声与甲胎蛋白进行检查,当发现疑似肝癌或者出现异常时,再通过穿刺活检的方式进行病理学分析。该方法检查结果准确性较高,但是对于患者和检查人员都会造成过多的负担。随着医疗数据的不断累积,在大量的临床数据中借助机器学习等算法工具寻找潜在的肝癌标志物,通过相关分析建立预测模型以提高肝
本文采用闪式提取法对木鳖果(Momordica cochinchinensis Spreng)活性成分的提取进行了系统的研究。通过对木鳖果假种皮中的脂肪酸和番茄红素以及木鳖果果皮中的叶黄素分离提取控制条件的研究,建立了高效提取木鳖果活性成分的生产工艺。在实验室0.5 L规模实验结果指导下,完成了150 L规模的中试放大实验,为木鳖果活性成分提取的工业化生产奠定了基础。本文的主要研究成果包括:(1)
石油是最重要的现代工业原材料之一,既可作为燃料直接用于燃烧,又可作为重要的化工原材料,既可作为民用,亦是国防的重要战略物资。国内中高渗透老油田大多已进入高含水和高采出程度阶段,低渗透油田面临标定采收率低、常规水驱开发效果较差的局面,均进入提高采收率技术应用时期。二氧化碳驱油是主要的提高采收率技术技术之一。但油藏条件下二氧化碳粘度远低于原油,驱油时油气流度比大、易发生“粘性指进”和气窜现象,制约了二
聚丙烯是一种常见的驻极体材料,在经过驻极处理后,纤维陷阱中捕获大量的电荷,从而实现高效空气过滤。聚丙烯的驻极不仅可以通过电晕驻极等后处理工艺进行,也可以通过离心熔体静电纺丝法在制备纤维的同时对其进行驻极。然而其过滤效率受环境影响,放置一段时间后普遍存在电荷的衰减消散,造成过滤效率的快速下降,在有油性颗粒的环境中,这种现象的更易发生。聚丙烯中驻极电荷的稳定性主要与纤维结晶性能、电荷陷阱深度以及油雾粒
酯类化合物是一类易溶于有机溶剂且在活细胞结构中具有重要作用的物质,在化学、食品和医药中应用广泛,故建立高效、绿色的酯类合成方法一直是研究的热点。以代谢工程为基础,利用微生物生产酯类化合物是一种新的合成途径,而筛选可高效表达的酰基连接酶及转移酶是构建该途径的关键。本论文以大肠杆菌为底盘,运用基于基因工程与发酵工程的联合优化策略,探究了不同来源的酰基连接酶及转移酶的适配表达机制,并结合全细胞催化及基因
近年来随着数字经济的兴起,各种新型诈骗案件日益增多且诈骗手段花样繁多。由于缺乏社会经验加之使用网络,大学生群体已成为犯罪分子实施新型诈骗的主要对象之一。介绍数字经济时代新型诈骗出现的背景和形式,并调研分析大学生受骗的状况和特点,说明当前基于信息技术的网络反诈平台的应用情况。在此基础上,从增强内生性安全观念和实施外在性安全策略两个角度阐述通过教育管理、法律制度和信息技术等手段来增强大学生防范新型诈骗
核酸分子识别与检测对于肿瘤、病毒感染等疾病的预防、控制、诊断和治疗非常重要,目前已有的核酸检测技术多基于PCR扩增,由于其需要严格的温度梯度控制,在现实检测中常受到环境条件的限制。生物样本的基因组多为双链核酸,已有的核酸分子诊断手段要对双链核酸进行检测通常需要经过特殊的引物设计以及酶切消化等前处理步骤,基因组核酸片段被消化为单链寡核苷酸片段后才能进入检测体系被有效识别,这大大限制了核酸分子检测的效
癌症即恶性肿瘤是威胁人类健康与生命的主要疾病之一。目前肿瘤临床诊疗面临的问题主要是不能在肿瘤发生早期对微小病灶做出精准诊断、有效治疗及预后,这都导致肿瘤患者的死亡率居高不下,因此,设计开发新型肿瘤诊疗药物成为肿瘤精准诊断及治疗的重中之重。近年来随着纳米技术的发展,纳米材料由于其在声、光、磁、热等方面独特的性质而在肿瘤诊疗领域有了越来越广泛的应用,尤其是集多种功能于一体的诊疗一体纳米探针,在肿瘤的早
细菌感染是阻碍伤口愈合的主要因素,虽然临床上使用抗生素可以应对细菌感染。但是,滥用抗生素使得细菌耐受性和耐药性不断提高,甚至产生超级细菌,从而使细菌感染成为巨大的公共卫生风险。因此,探索对抗细菌感染的非抗生素替代策略变得尤为关键。纳米酶是指在相关生理条件下遵循酶动力学,能够催化酶底物转化为产物的纳米级人工模拟酶,由于易制备、低成本和高稳定性等特点而受到人们的广泛关注。基于此,本课题构建了一种具有良