【摘 要】
:
设 G是有限2群.称 H1<H2<…<Hs为群 G的一条非正规子群链,若 Hi≠G,其中 l≤i≤s.并称 s为其长度. chn(G)表示 G的非正规子群链的长度中的最大值.本文完全分类了 chn(G)≤2的有限
论文部分内容阅读
设 G是有限2群.称 H1<H2<…<Hs为群 G的一条非正规子群链,若 Hi≠G,其中 l≤i≤s.并称 s为其长度. chn(G)表示 G的非正规子群链的长度中的最大值.本文完全分类了 chn(G)≤2的有限2群.
其他文献
为了研究两个稳定过程碰撞问题,Jain和Pruitt(1969年)曾讨论了单指标稳定分量过程.Taylor和Pruitt进一步讨信纸了单指标稳定分量过程的样本轨道性质.Ehm对多指标稳定过程的样
老师问小哈默:“地球是什么形状的?”小哈默答道:“是圆的。”“你怎么知道它是圆的呢?”“那就算它是方的吧。您是老师,我不想为了这个引起一场争论。” 女英文教师问:“Eye,是什么东西?”学生答:“不晓得!”女英文教师提示道:“看我鼻子的两边是什么?”学生大呼:“是雀斑!” 一位教授在给学生发考试卷。他发卷子的方式很特别:分数最高的,他举到学生的头顶上才发;分数稍低的卷子放在学生的桌子上;差一点
肤色提取在图像处理中的应用非常广泛,现有的肤色模型都有缺陷,本文主要使用一种新的滤波方法和支持向量机(SVM)方法对肤色数据点集进行数据挖掘,得到新的肤色提取模型,进而
在该文中,我们通过利用L-S度理论,定义了λJ+A+C的度,最终引入A+C的广义度,其中A为极大单调算子,C为紧算子,λ为一正数,J为对偶映射.我们研究了deg(A+C,D(A)∩G,y)的性质并推
根据向量格(又名Riesz空间)的定义,该文考虑了Riesz空间上格运算的等式与不等式,以及Riesz空间上的正则算子对格运算规律.着重考察了几种特殊算子,象序投影,格同态,中交保持
常微分算子理论是当代量子力学的数学支柱,是解决数学物理方程以及大量科学技术问题的重要数学工具.微分算子谱理论是微分算子理论的基础问题之一,特别是由于微分算子谱理论
运筹学发展到现在有五六十年的历史,内容丰富,小及面广,应用范围大,已形成了一个盯当庞大的学科.它的主要内容包含线性规划、非线性规划,整数规划、动态规划、多目标规划、网
目前保险市场上有各种不同的寿险产品,而不同类型产品的风险是各不相同的。产品定价在寿险公司经营管理中占据着重要的地位和作用,然而目前运用的几种定价方法并未完全考虑到利润和风险的关系,这可能给寿险公司带来经营风险。本文主要对以下三种不同类型的传统保险:定期寿险、两全保险和终身寿险的定价问题进行研究,并在研究过程中考虑了投保年龄以及投保险种不同而导致面临不同风险的异质保单组。首先推导出了三种保险的前瞻亏
该文的研究和分析分表算法的基上,对其进行了改进,主要有以下几点:1、传统的分形压缩算法都是建立在压缩映射的基础上,通过函数迭代系统完成编码,这样带来的计算量大,耗时多
Baecklund变换是求解孤立子方程的一项重要方法,而非线性迭加公式在求显式表达式中发挥重要的作用.该文通过Baecklund变换的一种显示形式——Darboux变换的方法,给出了AKNS系