【摘 要】
:
壳聚糖材料,因其化学结构中含有羟基、氨基等亲水性基团,被广泛用于制备渗透汽化脱水膜。然而,壳聚糖的亲水性会使水分子在渗透汽化过程中穿插到壳聚糖链间,使其溶胀,失去分离选择性。前期已有研究者通过化学交联的方式构建壳聚糖交联网络,来克服溶胀现象,以期实现稳定的分离选择性。然而,传统化学交联法制备的壳聚糖膜通常具有一定的厚度,导致传质阻力大,渗透通量小,综合效益低。因此,本论文采用低温水相法和自组装法在
【基金项目】
:
国家自然科学基金(21878117); 国家重点研发计划课题(2020YFB1709301); 深圳市知识创新计划基础研究项目(JCYJ20160408173516757);
论文部分内容阅读
壳聚糖材料,因其化学结构中含有羟基、氨基等亲水性基团,被广泛用于制备渗透汽化脱水膜。然而,壳聚糖的亲水性会使水分子在渗透汽化过程中穿插到壳聚糖链间,使其溶胀,失去分离选择性。前期已有研究者通过化学交联的方式构建壳聚糖交联网络,来克服溶胀现象,以期实现稳定的分离选择性。然而,传统化学交联法制备的壳聚糖膜通常具有一定的厚度,导致传质阻力大,渗透通量小,综合效益低。因此,本论文采用低温水相法和自组装法在聚丙烯腈(PAN)中空纤维支撑层表面分别引入MOF-801或植酸(PA)-Fe3+络合物作为中间层,对壳聚糖选择层进行原位交联改性,制备薄膜复合(TFC)膜,来提升渗透分子的传质效率。中间层的引入,一方面可以抑制选择层向基膜内部生长,另一方面优化基膜的表面性质,引入大量的交联反应位点,便于原位交联制备壳聚糖选择层,从而制得了具有理想形貌和高分离性能的壳聚糖TFC膜。本论文系统地研究了这两种策略对TFC膜的理化性质和渗透汽化乙醇脱水性能的影响,为制备和优化渗透汽化中空纤维TFC膜提供了新思路。在第一个工作中,采用低温水相原位生长的方式在PAN中空纤维基膜表面引入MOF-801层,通过XRD、FTIR、SEM和表面水接触角测试等表征手段研究了中间层改性对中空纤维膜理化性质的影响。接着,借助MOF-801中间层表面的活性交联位点,通过浸涂壳聚糖原位交联制备TFC膜,并进一步探究了MOF-801中间层的生长温度和生长时间对所制备膜的理化性质和渗透汽化性能的影响。结果表明,MOF-801生长温度为30℃,生长时间为9 h时制备的壳聚糖TFC膜的渗透汽化性能最佳,在处理50℃的乙醇/水(90/10 wt%)料液时,可取得1305 g·m-2·h-1的渗透通量,渗透液中的水浓度达到96.9 wt%(分离因子为314)。为了进一步提高渗透汽化性能,基于Fe3+、PA和壳聚糖之间的超分子相互作用,通过自组装法在PAN中空纤维基膜表面构建PA-Fe3+络合物层作为中间层,然后浸涂壳聚糖来制备超分子相互作用交联的TFC膜。通过FTIR和XPS等表征方法证明了PA-Fe3+络合物与壳聚糖之间存在较强的超分子相互作用,可用于原位交联壳聚糖形成稳定的络合物结构,提升壳聚糖TFC膜的抗溶胀性能。超分子相互作用交联的壳聚糖TFC膜展现出优异而稳定的渗透汽化性能,在处理50℃的乙醇/水(85/15wt%)料液时,渗透通量最高可达2866 g·m-2·h-1,渗透液中的水浓度为99.5 wt%(分离因子为1225)。此外,探究了不同类型膦酸和不同金属离子对所制备TFC膜的理化性质和渗透汽化性能的影响。结果表明,超分子相互作用交联可以代替传统的化学交联,制备具有良好的抗溶胀性能和优异的渗透性能的壳聚糖TFC膜,且制膜工艺更加简单,绿色环保,具有广阔的工业应用前景。
其他文献
氨选择性催化还原(NH3-SCR)是目前柴油车尾气脱氮氧化物的首选商业技术,其关键在于催化剂。CHA结构的Cu-SSZ-13具有优异的脱硝性能和水热稳定性,但其低温活性、抗硫中毒能力需进一步提升。AEI结构的Cu-SAPO-18同样脱硝性能优异,但其水热稳定性需优化。因此,本文针对商用Cu-SSZ-13的合成策略进行优化并对极具商业应用潜力的Cu-SAPO-18进行提升抗水热稳定性及催化活性的探究
目的:探讨急性上消化道出血急诊绿色通道对尽早开展床旁胃镜止血中的作用。方法:随机选取急诊绿色通道建设前后急性上消化道出血并且采用床旁胃镜止血治疗患者,按照就诊时间分为两组,对比分析两组开始胃镜治疗时间,止血有效率,复发出血率,并发症发生率以及患者的输血量。结果:试验组开始床旁胃镜止血的时间明显缩短,同时试验组的止血有效率高于对照组,并且复发出血率,并发症发生率以及输血量都低于对照组,差异均有统计学
在肿瘤细胞原位发生聚合反应,不仅可以提高纳米药物材料的生理稳定性,也可以延长其在肿瘤部位的滞留时间,为抗肿瘤治疗提供了新的机遇。由于脂肽具有可设计性、多功能性、靶向性和优异的生物相容性等优势,使其在活细胞原位聚合领域有重要的发展前景。其中,二乙炔脂肽具有无需外源刺激和可视化追踪活细胞原位聚合行为的特点,受到人们广泛关注。应当指出,二乙炔脂肽原位聚合的研究刚刚起步,其原位聚合机制、细胞内分布以及对细
随着近几年高校大学生心理问题越来越严重,各个高校也越来越重视对大学生的心理健康教育,但是在日常的教育引导过程中仍有许多不足之处。文章通过分析传统大学生心理健康教育模式存在的问题,探究短视频教学资源融入大学生心理健康教育的必要性,并对教师如何将短视频资源其运用于大学生的心理健康教育提出了一些针对性建议。从而以期在一定程度上能够促进大学生心理健康教育课程的发展,更好地实现心理育人。
核酸、蛋白质等生物大分子的螺旋构象在生命活动中扮演着至关重要的作用,如分子识别、催化反应以及基因的复制和转录等。近二十年来,人们合成了许多人工螺旋折叠体用来模拟生物大分子的结构及功能,并将其应用于不对称催化、手性识别和圆偏振发光等领域。其中,聚苯撑乙炔类人工折叠体因具有多处结合位点,灵敏识别并结合客体小分子等优点引起了关注。但是,聚苯撑乙炔类折叠体的主链刚性较大,且主链间存在π-π堆积作用,因此,
偶氮苯作为一种常见的乏氧响应断裂基团,在荧光探针、药物递送领域有着广泛的应用。近期研究表明,双端共轭苯环的结构给偶氮苯提供了丰富的反应位点,通过改变这些位点上具有不同推吸电子能力的取代基,可以调节偶氮苯基团的反应活性,进而调节偶氮苯的响应性断裂速度。然而到目前为止,报道的大多数载体材料中所使用的偶氮苯基团结构组成单一,且偶氮双键的断裂速度相对缓慢,不同结构的偶氮苯基团对纳米载体在乏氧环境中响应性释
配位键作用介导的超分子化学及功能材料,是纳米科学和生物医学领域的重要研究方向。通过配位键作用的介导,具有特定配位基团的有机配体与金属离子之间可形成配位组装体,此组装体兼具有机配体和金属离子的特征,常具有发光、微孔、磁性及抗肿瘤等优异特性。构建纳米级金属有机配位组装体及有效调控其微观形貌具有重要的研究价值;且由于配位相互作用(如Cu(Ⅱ)与硫脲基团)的高键合常数及pH响应性,有机配体与金属离子形成的
纳米粒子超晶格是指纳米粒子在范德华力、静电作用力、毛细力等相互作用下组装得到的周期性阵列结构,其性能不仅取决于纳米粒子各组分的性质,还取决于超晶格中纳米粒子的排列规整程度和空间排列方式。聚合物接枝金纳米粒子作为超晶格的组装基元之一,不同分子量的聚合物接枝于金纳米粒子表面不仅可以稳定粒子,还可以诱导其有序堆砌、调控粒子间距和空间结构,因此采用聚合物接枝金纳米粒子可有效调控超晶格的结构。然而,目前关于
全息高分子/液晶复合材料是一类结构功能一体化的高分子复合材料,不仅能够通过周期性的有序相分离结构存储光波的振幅、相位等全部信息,还可以通过引入的光响应性液晶等存储其他信息,在高端防伪、高密度数据存储等高新技术领域具有广阔的应用前景。然而,设计合成与全息复合材料体系相容的光响应性液晶是一大难题。本文设计合成了基于α-氰基二苯乙烯的光响应性液晶,然后与全息高分子/液晶复合材料集成,通过烯类单体的自由基
氢具有能量密度高、清洁等优势,因而成为一种有前途的替代能源。目前通过电解水或化石能源转化制氢的方式存在消耗化石能源和传统能源的问题。利用合适的光催化剂进行光催化分解水制氢因取之不尽的太阳能输入成为一种有潜力的制氢方法。聚合物光催化剂因其独特的优势成为光催化分解水制氢的有前途的材料。其中,共价三嗪框架(Covalent trazine frameworks,CTFs)具有光学带隙可调、含氮量高、热稳