非遍历反常扩散随机游走理论的模型、分析及蒙特卡洛算法模拟

来源 :兰州大学 | 被引量 : 0次 | 上传用户:dong770527
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
分数阶导数因其非局部性,在数学、物理、生物等领域中被广泛地应用于研究具有记忆性的随机过程.本文主要研究非遍历反常扩散的随机游走理论,并通过蒙特卡洛数值算法逐一验证理论结论的正确性.通过随机游走理论研究非遍历反常扩散运动时,往往会构建两类独立同分布的随机变量,即等待时间以及跳跃步长,然而现实当中由于粒子所处运动区域的不同,随机游走的等待时间以及跳跃步长所满足的分布会有一定的变化,为了处理这一部分问题,我们引入了内部状态这一概念,并推广了经典的随机游走理论.另一方面本文还系统研究了时空耦合的随机游走理论,将时间与空间从经典的线性耦合推广到更加一般的耦合方式,并通过正交多项式理论来计算一些统计量等,进一步利用这一方法从理论上解决了在调和势下时空线性耦合的随机游走问题.本文共分为七章.第一章简要介绍了分数阶方程以及非遍历反常扩散的发展过程以及物理背景,同时对研究现状进行分析.之后大致描述本文的研究内容,方法以及创新点等.第二章主要研究了具有多内部状态的复合泊松过程.首先我们简要介绍了经典的连续时间随机游走模型,该模型也可以被视为一种复合泊松过程.之后我们将多内部状态的概念引入到连续时间游走模型中,并通过相关背景的介绍来说明引入内部状态这一概念的意义.接着本章将推导粒子在某一时刻所处位置的概率密度函数所满足的宏观方程,即Fokker-Planck方程,之后通过构造状态转移矩阵以及等待时间,我们得到了二阶矩的渐近行为,并分析了反常扩散指数的转移方式.之后通过定义粒子轨迹以及内部状态的泛函,分别推导出各个泛函概率密度函数所满足的宏观方程,即Feynman-Kac方程,并分别对于这两种Feynman-Kac方程给出具体的应用实例.本章最后将应用具有多内部状态的复合泊松过程来处理非即时重复随机游走过程,并通过计算二阶矩来反应扩散的快慢.在第三章中,我们将基于连续时间随机游走构造刻画转移扩散指数的反常扩散模型,这种反常扩散在自然界中同样是很常见的.基于连续时间随机游走框架,我们选择等待时间的概率密度函数为含有三参数的Mittag-Leffler函数。并且通过该模型,我们将从理论上计算该随机过程的均方位移,同时我们将看到扩散指数的转移趋势。此外在这一章中,我们还将给出该过程所满足的宏观方程以及相应的随机表示。最后我们将通过该模型计算分数阶矩,以及计算该过程在调和外势下的概率密度函数.在第四章中,本文的讨论将由时空独立的过程转移到时空耦合的随机游走.时空耦合的随机游走,即莱维游走,在数学以及物理中同样具有很多的应用.首先本章将介绍莱维游走的基础理论以及研究意义,研究现状等.之后我们将构建多内部状态莱维游走模型,并对空间和时间变量分别做傅立叶以及拉普拉斯变换得到该过程粒子位置分布函数的形式.同样我们将分析非即时重复的莱维游走,我们发现对于超扩散类型的莱维游走,非即时重复对于其Pearson常数以及均方位移均没有影响,这是莱维游走的一种稳定性.然而当莱维游走表现出正常扩散的动力学行为,此时非即时重复的影响将会显现出来.对于特定的转移矩阵,对应的多内部状态莱维游走可能不再是对称过程,这时我们将具体地考虑其方差,并与对应的连续时间随机游走模型进行对比,结果表明两者方差在幂次的变化程度上有显著的不同.由于均方位移已经不足以区分非即时重复的类型,我们进而通过数值模拟得到各个非即时重复的莱维游走首次通过时间分布以及均值,模拟结果表明这两个量可以较为清楚地区分不同类型的非即时重复莱维游走.在第五章中,我们将通过利用埃尔米特正交多项式来处理速度与参数相关的莱维游走问题.通常我们使用积分变换(包括傅立叶变换,拉普拉斯变换)的方法来处理及分析随机游走过程,然而对于时空耦合的问题,比如莱维游走,有的时候积分变换这个方法将不再适用.于是作为积分变换方法的一种补充,在这一章中我们将着重介绍埃尔米特正交展开的方法.首先我们将通过这两种方法分别计算一些经典统计量,并由计算结果的一致性,我们可以验证正交多项式方法的正确性.此外我们考虑了速度与参数有关的莱维游走,即莱维游走的速度大小与每一步的游走长度或者游走时间相关.在这种推广的莱维游走中,我们发现了一些有趣的现象,比如概率密度函数的特殊形状,首次通过时间以及均方位移多种不同的扩散行为等.在第六章中,我们将讨论调和外势对于莱维游走的影响.首先我们将通过埃尔米特正交多项式对调和外势下的莱维游走概率密度函数进行展开,并计算一些统计量以及稳态解的近似形式.同时我们还考虑了在调和外势下,原点处具有反射边界的莱维游走,并计算了稳态解近似形式.我们的结果解决了围绕着莱维游走多年的难题,同时也说明正交多项式在处理莱维游走等问题中还蕴藏着巨大的潜力.本文第七章将对全文进行总结以及对未来工作的展望.
其他文献
学位
电荷-宇称不守恒(CP破坏)是解释宇宙中物质-反物质不对称的基本要素。D介子是自然界含有重夸克的粒子中最轻的一组,其CP破坏在寻找新物理方面具有独特的优势。本文研究了 D介子衰变到中性K介子过程的CP破坏。我们发现在这类过程中存在一种新的CP破坏效应。它是由树图(包括Cabibbo-支持的和Cabibbo-双压低的)振幅和末态介子混合之间的干涉导致的。我们用因子化辅助的拓扑图方法系统地分析了 D→
花粉萌发和花粉管生长是被子植物完成有性生殖不可或缺的关键生理活动。花粉管生长是一种典型的顶端极性生长方式,依赖精准的“运输系统”保障其顶端快速地生长。Rab GTP酶是一类在真核生物中保守存在的囊泡运输相关蛋白,在囊泡形成、转运、栓系、融合、以及不同途径的内膜转运过程中都起着至关重要的作用。其中Rab A、Rab D等亚家族的少数成员被证明参与花粉发育和花粉管极性生长过程。尤其是GFP-Rab A
根的生长需要根尖分生组织细胞的连续分裂。ROOT MERISTEM GROWTH FACTORs(RGFs)是维持根尖干细胞微环境的一类关键多肽类激素。我们实验室和其他实验室前期的研究发现了五个进化关系相近的富含亮氨酸重复序列的类受体激酶(LRR-RLKs),将其命名为RGF1 INSENSITIVES(RGIs)或者RGF1RECEPTORS(RGFRs)。这五个蛋白在感知RGF1的信号并调控拟
强相互作用是人类已知的四种基本相互作用之一,量子色动力学是描述夸克层次上强相互作用的SU(3)局域规范理论。QCD的性质如渐进自由等特性使其呈现出丰富的物理内涵,并产生了复杂的相结构。QCD相图对早期宇宙演化、重离子碰撞以及致密星体结构等方面的研究具有重要意义。人们通过高能重离子碰撞实验产生高温高密的物质,即夸克胶子等离子体,来探索极端状态下物质的形态与特性。人们普遍认为在低化学势区域QCD相图上
本文主要研究了自由罗巴族代数,自由(三)叶型族代数和自由预-李族代数,全文共分为五章.第一章介绍了本文研究课题的背景及其进展,并给出了本文需要的基本概念和一些相关的记号,然后分析了本文的研究动机.第二章首先构造并证明了自由交换罗巴族代数.然后借助括号字,利用Gr(?)bnerShirshov基方法证明了自由非交换罗巴族代数.最后,引入了(三)叶型族代数的概念,证明了权为0(权为?=0)的罗巴族代数
通过介绍隧道工程的定义和对塑料材料的要求,指出运用于隧道工程的塑料材料应当具备良好的力学性能、耐化学腐蚀性能、防水性等特点。根据目前国内外塑料材料在隧道工程的最新研究成果,分别从聚乙烯塑料、聚氨酯塑料以及其他塑料材料方面,综述塑料材料在隧道防水、防火、应急救援、防冻害和堵水等方面的应用现状。指出目前关于塑料材料在隧道工程中应用主要包括材料的加工工艺、性能测试以及实地性能验证等方面,对于材料种类、材
随着无穷维动力系统理论的深入发展,许多由数学物理方程生成的耗散动力系统显现了一定的有限维属性.由此引发了一系列对无穷维动力系统进行有限维约化的研究.经典的惯性流形理论表明,如果一个偏微分方程存在一个N维惯性流形,则其长时间行为可以约化为一个N阶常微分方程组.这本质地简化了对原始偏微分方程动力学行为的理解.目前,惯性流形研究仍是无穷维动力系统中十分重要且具有挑战性的问题之一.本文研究惯性流形及其在耗
有限元方法作为数值求解偏微分方程的有效方法,其思想是把区域离散化,然后用分片多项式函数对解析解进行逼近,因此可以对不规则复杂区域的问题进行高效求解.随着有限元方法研究的深入,已经有很多成熟的有限元程序包在工程界广受欢迎,并在工程计算中大量应用,发挥着不可替代的作用.在科技飞速发展的当代,对实际问题进行模拟的偏微分方程也在快速发展之中,所以探索新有限元方法仍是数值研究领域的重要课题之一.本论文拟对几
反常扩散方程能够很好的刻画反常动力学的机制,包括空间幂律分布的扩散以及时间长程相关的扩散;因此吸引着各个领域的工作者去建立和研究反常扩散方程.确定性的方程能够呈现事物发展的主要规律,然而宇宙中的随机扰动无处不在,因此想要更全面的刻画事物的发展规律,学者们引入噪声项以刻画随机扰动.于是,随机微分方程的理论研究和数值研究也盛行起来.当方程中含有非局部算子和噪声项时,理论研究和数值研究会变得更具有挑战性