论文部分内容阅读
甲烷部分氧化制合成气(CO+H2)反应放热温和,且产物H2/CO的摩尔比约为2,非常适合甲醇生产以及合成清洁液体燃料,成为天然气开发的主要途径。本论文以金属Co为催化剂的活性组分,结合热力学模拟分析与实际实验过程,重点考察了载体对钴基催化剂甲烷部分氧化性能的影响。对开发新型催化剂用于甲烷部分氧化制合成气工艺过程有重要的研究意义。首先,运用热力学方法对甲烷部分氧化过程以及催化剂在制备、活化和使用过程进行了热力学模拟研究,发现在700800°C的条件下处于热力学积炭区,积炭发生不可避免。计算结果表明,Co易与Al2O3发生固相反应生成难还原的CoAl2O4,Ti物种也会和Co结合生成CoTiO3。焙烧后的Co/Ce-Ti-Zr催化剂中易保留较多的Co3O4,即Co与三元载体的相互作用较弱。在催化反应过程中,金属钴不会因反应气氛中含有O2而被氧化。反应中Co/Ce-Ti-Zr催化剂的Co物种几乎以单质的形式存在,为形成催化活性中心提供保障。在模拟分析的基础上,初步确立了催化剂制备和使用过程中的相关条件,然后进行实验研究。实验结果表明,单纯商业氧化铝负载Co的催化剂对甲烷部分氧化反应的催化活性很低,但添加碱土金属Sr作为助剂后,催化性能大大提高。原因是Sr能够削弱活性组分与载体的相互作用,但高温下这种削弱作用是有限的,仍然会形成非活性相CoAl2O4,使催化性能降低。虽然柠檬酸法制备的Co/Al-Ti-1催化剂中存在复合氧化物Al2TiO5,对CoTiO3和CoAl2O4同时具有抑制作用,但Co/Al-Ti-1的催化性能仍然低于2Sr-Co/Al。单元载体的催化剂Co/TiO2和Co/ZrO2只是在反应初期活性较好,随着反应的进行,性能逐渐降低,其中前者因非活性相CoTiO3所致,后者则因催化剂表面积炭和物相结构发生改变所致。Co/CeO2的催化性能则相对稳定,但CH4的转化率不高。在Co/Ce-Ti双元载体催化体系中,发现Ce-Ti-O固溶体和复合氧化物CeTi2O6可以同时存在,但两者的热稳定性较差,是导致该催化体系活性不高的重要原因;在Co/Ti-Zr双元载体催化体系中则未发现固溶体,但存在ZrTiO4复合氧化物,Zr的加入可在一定程度上抑制CoTiO3的生成。另外,在催化剂制备过程中,发现络合物对Co/Ti-Zr催化剂也有些影响,其中以聚乙烯醇(PVA)所制备的催化剂的活性明显较低,这是由于Co在其载体上的分散性较差所致。在Co/Ce-Ti-Zr三元载体催化剂体系中,生成的铈锆固溶体,因其存在晶格缺陷带来良好的催化活性,同时该催化剂很稳定。但焙烧温度达到900°C时将引起催化活性的降低,这是由于生成了Co-Zr合金,但在该催化剂中并未发现CoTiO3,可见Ce-Zr组分对其生成具有抑制作用。在载体的酸碱性方面,商业氧化铝和Al-Ti复合载体均有一定的酸性,Ce-Ti、Ti-Zr和Ce-Ti-Zr酸性极弱,近乎偏碱性。研制的偏碱性的三元载体的催化剂Co/Ce-Ti-Zr表现出最佳的催化性能。