【摘 要】
:
能源危机和环境污染已成为当今世界各国面临的严峻挑战,寻求绿色可持续的新能源是解决这一问题的重要举措。太阳能因其普遍、易得广受关注。将太阳能转化为电能和化学能是能源领域的研究热点,其中半导体材料一直是能量转换的核心。以纳米TiO2为基底的复合材料在太阳能电池、光催化降解污染物、裂解水产氢方面具有优异的表现。其中,一维TiO2纳米棒阵列(TNR)因其自身密集有序的结构在诸多形貌中备受关注。本文中采用水
论文部分内容阅读
能源危机和环境污染已成为当今世界各国面临的严峻挑战,寻求绿色可持续的新能源是解决这一问题的重要举措。太阳能因其普遍、易得广受关注。将太阳能转化为电能和化学能是能源领域的研究热点,其中半导体材料一直是能量转换的核心。以纳米TiO2为基底的复合材料在太阳能电池、光催化降解污染物、裂解水产氢方面具有优异的表现。其中,一维TiO2纳米棒阵列(TNR)因其自身密集有序的结构在诸多形貌中备受关注。本文中采用水热法在FTO导电玻璃上制备出高度有序的TNR,通过贵金属沉积和窄带隙半导体复合等方法对TNR进行改性处理,并研究了复合材料的表面形貌结构、光电化学和光催化性能。具体研究内容如下:实验中,采用水热法和光沉积法制备了Ag/MoS2/TNR三元复合光催化剂。对样品的形貌、微观结构、光学、光电化学和光催化性能进行了表征。实验结果表明,当反应时间为12 h时,Ag/MoS2/TNR异质结构阵列展现出最佳的性能。在瞬态光电流和光催化测试中,Ag/MoS2(12h)/TNR表现出最佳的光电流密度(120μA/cm~2)和光催化效率(75%),这分别是裸TNR的12倍和5倍。优异的光电化学和光催化性能可以归功于Ag纳米颗粒的等离子共振效应和半导体间异质结构的存在,它们不仅增强了样品对可见光的吸收,也加速了光生载流子在界面间的转移。因此,Ag/MoS2/TNR材料在光电转化、光催化领域具有潜在的应用价值。利用连续水热法制备了新型双Z型Bi2S3/BiVO4/TiO2(BVT)异质结构光催化剂。将BiVO4/TiO2(VT)两元光催化剂原位转化为具有较大光学吸收系数的BVT三元光催化剂。与TNR阵列相比,BVT光催化剂将光吸收范围扩展到近红外,并具有持续的高吸收强度。光电化学测试表明,BVT(4)具有最高的瞬时光电流(110μA/cm~2),比TiO2(10μA/cm~2)高出约11倍。通过在可见光照射下降解甲基橙(MO),研究了所有样品的光催化性能。结果表明,BVT(4)具有最佳的降解效率(76.3%),比裸TNR(19.7%)高出约4倍。突出的光电化学和光催化性能可归因于双Z型的电荷转移机制,它有效地促进了电子空穴对的分离和转移,从而使积累在不同半导体上的电子和空穴具有较强的氧化还原活性。这种新型的双Z型异质结构光催化剂具有卓越的性能表现,对TiO2基光催化材料的设计和制备具有重要的指导意义。
其他文献
湖泊不同位置岩芯沉积物相同代用指标的变化是否一致对于重建可靠的区域气候变化历史至关重要。目前多数研究仅利用深水区单一的岩芯沉积物来反演区域的气候环境变化,对于同一区域不同位置岩芯重建结果的异同尚缺乏研究。本文选择升金湖不同位置的两根钻孔岩芯沉积物为研究对象,同时在结合区域年代估算基础上,对比分析了各岩芯沉积物粒度、常量元素氧化物含量、微量元素含量等指标的空间变化情况,选用岩芯沉积物微量元素代用指标
环境中的重金属离子会对生物体造成严重影响,而这些重金属离子大多都是通过水体系统流入到环境中。因此,水体中的重金属离子被灵敏精准的测量至关重要。量子点材料由于易于合成、高荧光量子产率、灵敏度高和特异性强等优点被广泛应用于重金属离子的检测中。本论文设计、制备三种不同类型的量子点荧光传感器(荧光共振能量转移传感器、荧光直接淬灭传感器、比率荧光传感器)来对环境中的有害离子Hg2+离子和Cu2+离子进行检测
磷是生命不可或缺的营养元素,但当其超过一定水平则可能会成为引发湖泊富营养化和水华爆发的营养盐污染物。巢湖是我国三大富营养化湖泊之一,且是典型的磷限制型湖泊。营养盐污染物主要通过入湖河流输入湖泊,在传输的过程中部分营养盐会沉降并储存在河流沉积物中,河流沉积物成为了解湖泊营养盐来源的重要载体之一。河流沉积物中不同形态磷的生物可利用性有所不同,可用于指示环境条件的变化。沉积物中不同形态磷酸盐的氧同位素组
煤矿的持续开采造成地表变形,地表产生大量裂缝、沉陷等现象,最终形成大面积的采煤沉陷区,与此同时开采所产生的副产物会释放重金属进入土壤,会造成矿区土壤重金属的富集超过当地土壤本底值,产生重金属污染。临涣采煤沉陷区内环境复杂,区内既露天堆放大量煤矸石等工业固体废弃物又建有选煤厂、焦化厂、燃煤电厂等生产企业,都对周边土壤重金属含量与分布特征都会产生影响。本文以安徽淮北临涣采煤沉陷区为研究对象,采用数理统
沉积物是湖泊环境演化的重要信息载体,能够记录人类活动或自然因素导致的湖泊环境变化。磷是湖泊富营养化限制性营养元素之一,在外源输入得到有效控制后,磷-铁-硫耦合系统在控制湖泊沉积物内源磷的地球化学循环方面起着重要的作用。本研究以浅水富营养化湖泊巢湖为研究对象,在全湖布设9个定位样点,采集表层(S1~S9)和柱状(S3、S7)沉积物样品,分析了沉积物理化指标和磷铁硫元素的形态组成及分布,解析了巢湖沉积
全球氮沉降日益严重,尤其氮沉降成分全球变化趋势表现出巨大的地区差异。升金湖作为季节性波动的自然湿地,其湿生植物物种可能通过获取不同形式的氮来应对氮沉降成分的变化并减少对相同氮源的竞争,尚不清楚邻体植物密度的变化是否会对其氮素吸收过程产生影响。另外,尽管丛枝菌根真菌(AMF)共生利于植物对氮素的利用,尚不明确不同水分条件和氮沉降格局下,AMF共生对湿地植物氮素利用策略的影响。为此,以升金湖的优势物种
随着城市污水治理初步取得成效,农村污水治理已成为新农村建设中的重要工作之一。紫蓬山地区是巢湖主要支流——派河的重要水源地,与派河干流和“引江济淮”工程水质安全密切相关。由于当地特殊的地形地貌和自然条件,雨季时沟塘内污染物溢出,严重影响了派河水质安全,因此急需一种低成本、可回用且无二次污染的污水处理方法对当地污染水体进行治理。本论文以紫蓬山地区污水为研究对象,制备出一种以磁性纳米Fe3O4颗粒、没食
我国城市污水处理厂二级出水通常呈低碳氮比,难以满足深度反硝化脱氮的需求。为了解决这一问题,外加碳源是实际工程中常用的一种方法。反硝化生物滤池(Denitrification Biological Filter,DNBF)具有经济高效、稳定的特点,是国内外常用的污水深度脱氮处理单元。城市二级出水经过DNBF深度处理后回用,可有效缓解我国水资源压力。在生化处理过程中,反硝化微生物具有不同的碳源代谢途径
露天矿开采是一种常见的采矿型式,但因其特殊的作业和施工方式,容易引发地质灾害、植被荒漠化、大气污染、水环境污染和生物多样性破坏等一系列的环境问题。针对露天矿区出现的环境问题,对露天矿边坡进行变形监测,维持边坡的稳定性,预防滑坡对环境造成二次污染和破坏是矿区环境治理的重要工作。卫星定位技术因其监测周期短、定位精度高等优势广泛应用于变形监测工作中,随着北斗三号全球卫星导航系统(Beidou-3 Glo
纳米材料通常是指纳米尺寸小于100 nm的材料,纳米材料具有比表面积大、表面能高等特征,这增大了与其他分子相互作用的机会和能力,因此,纳米材料具备着强大的潜在应用价值。例如,金属纳米材料可以具有抗癌、抗菌、催化、磁和光学活性。量子点是一种具有量子限域作用,粒径小于或接近激子玻尔半径,主要由Ⅱ-Ⅳ族或Ⅲ-Ⅳ族元素构成的半导体纳米材料。近几十年来发展起来的纳米科学研究及其应用,对许多信息技术、能源、环