虚拟场景下基于脑机接口的空间认知评估与识别方法

来源 :燕山大学 | 被引量 : 0次 | 上传用户:cmcbst
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着人工智能的兴起,以脑机接口(Brain Computer Interface,BCI)为桥梁的脑神经科学研究正迅速展开。其中对虚拟现实场景下空间认知脑电信号的分析成为该领域研究热点,通过空间认知训练前后脑电信号变化可以有效评估认知能力训练效果。目前,在空间认知脑电信号研究方面取得了不少进展,主要包括脑电信号的特征提取以及后续的数据分类。但是仍然存在着不足,主要体现在计算不同通道之间的耦合特征强度时没有考虑到其他通道空间位置的影响。另外,探索出一种鲁棒性更强、性能更优的脑电特征数据分类模型也是该领域的一大难点。基于此,本文结合国内外研究现状,从特征提取与分类方法入手提出了新的脑电耦合特征提取方法和脑电信号分类模型。首先,本文结合互信息理论,提出了基于多维条件互信息共空间模式(Multivariate Conditional Mutual Information Common Spatial Pattern,MCMICSP)的脑电信号特征提取算法。由于传统的CSP算法输入的脑电信号要求表现出严格的线性相关,并不适用于本实验的脑电数据;因此本文将传统共空间算法中的协方差矩阵替换为多维条件互信息耦合矩阵。这样不仅考虑其他脑电通道对耦合特征的影响,而且根据脑电信号的线性相关程度来构建空域特征滤波器,进一步弥补了现有特征提取方法的不足。其次,本文提出了多尺度密集融合卷积神经网络(Multiple Scale Dense Fusion Convolutional Neural Network,MSDFCNN)。针对传统CNN卷积核单一、容易缺失有效特征信息等问题,引入不同尺度卷积核来有效减少脑电信号特征丢失的现象。针对本实验研究样本相对较少的问题,通过引入密集网络方法策略,实现特征重用,同时减少梯度弥散;并使用自适应梯度随机下降算法对提出的分类算法进行过程优化。最后,对上述内容进行实验与结果分析。为了分别验证所提两种算法的有效性,本研究选取了虚拟现实场景下空间认知训练前后的脑电数据作为数据集,并与原有的特征提取和分类算法开展对比实验。结果表明,本研究提出的特征提取算法能够更加有效地评估空间认知训练效果;提出的分类算法在脑电耦合特征分类方面有更高的准确度与更强的泛化能力。
其他文献
数学作为初中阶段的一门基础学科,受到教师和学生的广泛关注。在新课程改革背景下,培养学生的学科核心素养是重要的教学内容之一。而单元整体教学对培养学生的思维能力及学科核心素养十分有利。单元整体教学是指以多课时单元为基本单位,对单元中的所有知识进行概括和总结,找出重难点进行教学。在初中数学教学中,单元整体教学常用于复习阶段,并取得了非常好的效果。基于此,教师应加强对单元整体教学在初中数学课堂中的运用探究
传统搜索引擎在查询网络数据时,返回的往往都是包含许多噪声的数据,查询效率低下。随着人工智能技术的发展,自动问答系统逐渐成为新的人机交互方式。知识图谱的出现为自动问答系统提供了更加精准的答案来源,基于知识图谱的问答系统也成为一个研究热点。然而,由于中文文本的表现形式复杂多样,传统的知识问答方法很难运用到大规模的中文知识库问答系统中。为提高中文知识问答系统的准确率,本文以开放域中文知识图谱为知识来源,
网络异常流量检测是保证网络信息安全的重要手段,准确、快速的检测出具体的异常流量类型对于维护网络安全至关重要。支持向量机(SVM)已经成为异常检测中一种常用的工具。然而,SVM多用于解决两类分类问题,无法识别异常流量的具体攻击类型,如何有效地将其推广到多类分类,并利用SVM实现异常流量的检测是一个重要研究问题。因此,针对上述问题,本文的主要研究工作如下。首先,本文具体分析了网络流量产生过程及其采集方
随着视频理解研究的不断深入和应用范围的不断扩大,行为识别任务逐渐成为相关领域的研究热点之一。大多数应用场景中计算资源有限,为了追求高准确率,目前的行为识别方法趋向于使用越来越复杂的结构,这极大地限制了行为识别在现实生活中的应用。因此,本文对基于深度学习的行为识别方法做了详细研究,在保证准确率的同时,着力降低方法的复杂度,以满足行为识别方法在现实生活中的应用条件,具体完成如下工作。首先,针对部分轻量
复杂网络是建模和分析复杂系统的有效工具,在理解复杂行为中起到关键作用。链路预测是预测复杂网络中未来连边或未知连边的一种方法。目前链路预测相关研究大多侧重于无向网络领域的链路预测,然而真实网络中的连边往往是有向的,直接简单地将无向网络指标用在有向网络上会降低预测精度。针对有向网络链路预测仅考虑单一互惠链接结构,却忽视了节点在网络中的其他拓扑结构因素,导致预测精确度较低的问题,提出基于互惠链路计数加权
交流异步电机具有结构简单、成本低廉、可靠性高等优点,被广泛地应用于工农业、制造业等社会生产生活的各个领域。然而交流异步电机具有多变量、非线性、强耦合等特征,且易受各种不确定因素的影响,给交流异步电机的分析和控制带来了一定的挑战。为了提高交流异步电机位置系统的动、静态性能和鲁棒稳定性,并在一定程度上简化系统的控制结构,本文主要进行了以下几个方面的研究工作:首先,基于坐标变换理论和矢量控制思想,建立了
图像超分辨率技术旨在将低分辨率图像重建成高分辨率图像,它是计算机视觉领域的热点问题,同时也非常具有挑战性和开放性。在医学,监控,遥感等行业领域都有非常广泛的应用前景。近年来随着深度学习的发展,基于深度学习的图像超分辨率算法获得了比传统算法更好的效果。通过对国内外研究现状的深入分析,发现目前许多算法对图像特征的利用不够完善,重建后的图像缺乏细节纹理信息,感知质量不高。本文在已有的基于深度学习的图像超
随着互联网技术的突飞猛进,自然界中的复杂系统可以抽象为复杂网络。如何准确有效地发现复杂网络中的重叠社区,快速实现功能划分,是当今世界复杂网络领域的问题。现阶段复杂网络分为无属性复杂网络和属性复杂网络。无属性复杂网络重叠社区发现算法大都基于结构划分,然而这些算法的准确率及稳定性有待提高。部分属性复杂网络重叠社区发现算法忽略属性信息,具有较大的信息损失。部分算法虽然充分利用了结构、属性信息,但是具有较
人们的工作学习越来越离不开网络。网络给人们的生活带来便利的同时,网络漏洞攻击,如拒绝服务攻击、突发访问、蠕虫病毒等也威胁着人们的隐私和财产安全。流量异常检测在检测和预防潜在威胁方面发挥着越来越重要的作用。在流量异常检测领域,已经有大量的研究成果,但是仍然存在一些问题,例如对未知攻击类型检测率低和对少数类别识别率不高等。本文针对其中的一些难题进行研究,主要研究内容如下:首先,基于迁移成分分析的流量异
随着基于位置的社交网络(Location Based Social Network,LBSN)不断地快速进步,个性化兴趣点推荐也逐渐流行,它可以帮助用户发现其可能感兴趣的位置。然而,由于兴趣点推荐是一种隐式反馈,使得用户-兴趣点之间交互存在困难,如果没有对用户签到行为进行“区别对待”,会导致对用户偏好的挖掘不够准确,而且由于用户的签到数量在整个位置社交网络中只占很小的比例,使得签到数据存在高稀疏性