论文部分内容阅读
在现有惯性器件精度的情况下,旋转调制技术是提高捷联惯性导航系统精度的重要手段。本文从满足船舶导航定位的实际需求出发,以单轴旋转调制技术作为研究对象,探索基于单轴旋转调制的捷联式惯性导航系统关键技术,以提高系统导航精度和性能。研究内容主要包括:1.针对高精度的导航解算算法要求,在旋转调制式捷联惯导系统中采用了角度调制型的解算结构,避免了转位机构误差对导航定位精度的影响。在姿态解算过程中,利用陀螺角速度输出的特点,使用了基于旋转矢量的梯形算法,并对不可交换性误差进行了补偿,仿真结果表明在晃动基座条件下该算法的解算精度满足使用要求。2.针对旋转调制方案的选择问题,从惯性器件的误差形式和旋转调制的需求出发,确定了基于单轴旋转调制的四位置旋停方案。在此方案下,详细分析了系统各项误差的调制作用,仿真验证了旋转调制效果。针对载体航向运动削弱旋转调制效果的问题,采用了使惯性器件直接相对导航坐标系进行四位置旋停的方案,仿真验证了该方法的合理性。3.单轴旋转调制系统无法调制系统初始误差,并且部分惯性器件误差仍得不到调制,如转轴方向的常值误差。为完成系统粗对准,主要介绍了四元素Kalman滤波粗对准法;为完成系统精对准并实现惯性器件误差的估计,根据系统的可观测性和可观测度,确定了精对准Kalman滤波模型。仿真结果验证了本文使用的对准方法和误差估计补偿措施的有效性,表明了旋转调制能有效提高对准效果和误差估计能力。4.精对准中系统误差各个参数的估计速度并不相同,其中陀螺的标度因数误差估计最慢,针对此问题,从误差激励的角度出发,提出了一种惯性器件相对转轴斜置安装的方案,该方案中三轴陀螺的标度因数误差都得到了较大程度的激励,仿真结果表明系统整体误差得到完全估计的速度提高了40%左右。