装配过程的智能感知及其建模研究与设计

来源 :沈阳理工大学 | 被引量 : 0次 | 上传用户:vincent_iong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着当今社会人工智能的迅速发展,各行业对无线定位技术的需求不断增加。目前飞机机翼的装配复杂,尺寸较大,在实际的装配过程中定位难、在装配时需要大量工人协作装配,工人仅根据经验或纸张看板装配,会出现错装、漏装等情况。为了满足工人对装配资源的定位以及装配信息可视化的需求,采用基于RFID技术和UWB(超宽带)技术的复合定位方案实现状态信息的获取,以建立实时更新的、现场感强的“真实”飞机机翼模型,利用真实的数据和虚拟机翼模型相结合分析。定位技术作为智能感知技术的研究重点,本文首先对UWB的定位方法进行比较,分析影响定位精度的原因,对TOA、TDOA、AOA、RSSI进行了理论研究,本文选择了基于TDOA方法对装配零件进行测距,在TDOA测距方法中时钟同步问题一直影响着定位精度,为解决这一问题,本文对到达时间差算法(Time Difference of Arrival,TDOA)进行改进,并在此基础上使用了卡尔曼滤波的时钟漂移算法,使得主从基站之间的时钟偏移得到更好的校正。然后通过Chan算法求解非线性方程,由于定位目标的最终解有着较大的不确定性,在此基础上使用最大似然的方法确定最终解,消除定位模糊,获取待测物体的坐标。最后将RFID与UWB获取的装配信息显示在上位机界面,实现了装配车间物理实体与信息世界的深度融合;信息平台主要是由Visual Studio 2019和CATIA V5结合而设计,这一信息平台可以对装配资源进行精准把控,对飞机机翼的装配过程进行实时有效地管理。本文的实验在可视的环境下测试,通过数次实验对所得数据进行对比分析,UWB在良好的室内环境中使用时定位精度可达到厘米级,验证了硬件平台的可用性以及理论的可行性。将两项技术获取的数据通过串口上传到上位机软件界面,在上位机上显示出装配资源的装配信息、装配零件的位置坐标以及装配过程的模型等。实验表明,本文所提出的改进算法提高了定位精度,减小了定位误差。UWB定位技术满足了装配过程的定位要求,两项技术的结合也满足了实际的需要,上位机信息平台的可行性高,易于维护,实现了装配车间对装配过程的智能感知以及装配模型的可视化需求,为车间工人的装配提供了参考。
其他文献
本文主要针对空战中在强干扰环境下对目标的识别与跟踪算法进行研究。敌方战斗机为了躲避我方导弹的识别与跟踪,会人为地释放干扰弹,产生强干扰。强干扰会严重影响红外制导、激光制导以及雷达制导等对目标的识别与跟踪,甚至有可能会导致丢失目标。本文对可见光图像的战斗机识别与跟踪算法进行研究。主要分析了目前应用最广泛的统一的实时目标检测第五版(YOLO v5)目标识别算法和高效卷积算子(ECO)目标跟踪算法,并进
学位
随着计算机图像处理、5G移动通信等技术的不断发展,模拟训练系统被应用到越来越多领域。通过在模拟训练系统中对现实复杂交通现象进行仿真,能够排除空间、时间、天气等诸多限制因素的影响,提供可持续的训练与研究,具有一定的研究意义与应用价值。本文基于模块化的思想,分析运动车辆精确定位模拟训练的需求,将系统整体结构进行了实现,主要研究内容包括:(1)阐述了多种无线定位方式,并按照基站铺设、定位误差、适用程度三
学位
一直以来,由于我国边境条件复杂,单一传感器的识别效果有限,且非常容易受到气候、能见度、人为伪装等多种因素的影响,导致识别效果不佳。本文主要研究了一种在复杂背景下将不同类别的传感器组合成簇的方法,能够协同、动态的对入侵目标进行跟踪识别。多传感器协同探测不仅增加了信息的互补,提高了识别准确率,还提高了系统的鲁棒性,实现了对目标的全方位识别探测。本文主要研究内容如下。(1)在复杂环境的复杂背景下,对通信
学位
在组织病理学图像分析中,细胞核的分割对癌症的临床分析诊断有着重要的作用,将细胞核精确的分割出来可以为肿瘤分级奠定良好的基础。但是由于细胞存在不同的形态,染色的不均匀以及大量密集的核团的存在,精确的分割出细胞核仍具有挑战。近年来,深度学习已经广泛的被应用到病理图像细胞核分割中,因为它能够自动在图像数据中获取重要信息。为了更好的使深度学习神经网络在训练过程中能学习到更多具体的关键的特征信息,本文对国内
学位
随着现代化的逐步推进,计算机、图形图像、硬件交互等技术已经成了生活学习中不可或缺的关键部分。虚拟现实技术作为一种新型的计算机技术,因其沉浸式和交互式等特性,正在潜移默化的改变我们的日常生活,也在各行各业产生了深远影响。在工业装配领域,传统装配方式需要消耗大量空间成本、时间成本、人力成本等,但是把虚拟现实技术与工业装配相结合,可以将真实的装配过程转变为在虚拟环境下的装配,解决传统装配技术带来的各个方
学位
学位
人体动作识别作为计算机视觉领域的关键技术之一,对现代社会的发展进步起到至关重要的作用。如何在不受复杂环境和目标个体差异的影响下提高机器识别人体动作的准确度,并使其快速准确的理解人所表达的动作信息是目前各大领域研究者们关注的重点。由微软发布的Kinect设备可采集三种不同类别的数据,其中深度数据和骨骼数据只取决于目标的空间位置,具有颜色无关性,动作识别受外界因素的干扰较小,为人体动作识别技术的研究提
学位
随着科技的不断进步,相关电子元器件的制造产业取得了高速发展,自动检测电子元器件产品质量也成为了电子元器件生产的现实需要。在自动检测领域中,“检测精度”与“检测速度”是两个十分重要的检测的指标。本文根据工业生产环境中对检测精度和速度的不同需求,提出以下两种需求目标:(一)允许少量精度损失的情况下以高速度为目标;(二)以较高精度的电子元器件表面缺陷检测为目标。针对这两种需求目标,本文分别设计了两种基于
学位
交通运输是一个城市的经济命脉,城市交通系统是一个复杂、庞大的系统,具有不确定性、多变性、随机性。随着城市车辆数量的不断增加,传统的交通信号配时方案无法应对,无论国内外,每年因交通拥堵造成的多方面损失都是巨大的。而智能交通信号配时技术的出现,突破了传统交通信号配时的危机和瓶颈。近些年来,随着智能技术的发展,基于深度强化学习(DQN)的交通信号配时技术成为智能交通信号配时中的主流。基于DQN的交通信号
学位
随着计算机视觉技术飞速提升再加之社会各界大力发展,基于深度学习的行人检测与跟踪技术愈来愈受到国内外专家的科研重视,各国科研所与科技公司都对此展开了着力研究。人们对于安全与隐私意识也愈发提高,对于室内监控则变得越来越重视并在教学楼,火车站,候机楼等各种场合都有着视频进行记录,用监控学生或员工的安全问题;同时也可以在室内某些恶劣情况发生时检测人们的轨迹检测并记录下来,及时发现情况将人身和经济损失降低;
学位