含氮多孔有机聚合物的配位修饰及其催化性能研究

来源 :江南大学 | 被引量 : 0次 | 上传用户:andyzhufeng5225
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多孔有机聚合物具有较高的比表面积、可调控的孔径结构以及稳定性良好的骨架,是一种有前景的电极材料。目前,大部分多孔有机聚合物无法修饰活性物质,阻碍了其进一步的发展。构筑含氮多孔有机聚合物有望提升材料锚定金属的能力以及电导率,从而增强其本征的催化活性。本课题聚焦于2D/3D含氮多孔有机聚合物及其衍生物的制备,并探究其电催化性能。主要内容如下:(1)二维含氮共价有机框架及其电催化析氧性能:将D2h对称的四醛3,3’,5,5’-四醛基-4,4’-二羟基联苯(TFBD)作为四连接构筑基元,分别与两种同为四连接构筑基元的四胺四-(4-氨基苯)乙烯(ETTA)和四-(4-氨基联苯基)乙烯(ETTBA)通过席夫碱反应合成了两种AA堆积且结晶性良好的二维共价有机框架COF-1和COF-2。COF-2(641 m~2·g-1)相比于COF-1(615 m~2·g-1)具有更大的比表面积,且COF-2(0.86 nm和1.48 nm)的菱形异孔孔径要比COF-1(0.68 nm和1.27 nm)的更大;借助后修饰将Fe、Co、Ni金属离子引入到材料骨架中,得到了六种电极材料(MCOFs)。得益于COF-2较大的比表面积和孔径以及COF-2-Fe结构中具有大量Fe-NO配位催化活性位点,其表现出优异的OER催化活性,过电位为282 m V@10 m A·cm-2。(2)二维含氮共价有机框架衍生的铁单原子及其电催化氧还原性能:采用上述制备的二维MCOF作为前驱体高温热解构筑具有Fe-N-C活性中心的铁单原子催化剂(Fe SAC)。通过粉末X射线衍射、球差校正透射电镜表明Fe SAC中铁是以单个原子形式分布的。由于Fe SAC中含有较高的吡啶N含量并且吡啶N对氧原子具有很强的亲和力,因此有利于其提高电催化氧还原活性。Fe SAC催化剂在碱性环境中表现出了0.897V的半波电位(E1/2),优于商用Pt/C催化剂。应用于实际,利用Fe SAC作为催化剂制备的锌-空气电池也表现出了优异的电池性能(峰值功率密度为117.3 m W/cm~2)。(3)三维含氮多孔有机聚合物及其电催化析氧性能:采用氯化亚铁、2,6-二甲酰基-4-甲基苯酚二肟(H3DFMP)和四(4-硼酸基苯基)甲烷(TBPM),通过一步配位作用和硼酸酯化脱水聚合反应,合成了一例铁基多孔有机聚合物(Fe2-POP)。Fe2-POP是以双核亚铁配位H3DFMP的直线单元与TBPM的四面体单元连接而成的具有三维金刚石结构的多孔有机聚合物。Fe2-POP具有较高的比表面积(510 m~2·g-1)和均一的孔径(0.6~0.8 nm)。由于Fe2-POP结构中具有双核亚铁活性中心,双核相较于单核可以加快电子传输,加速析氧催化反应的电荷转移。因此Fe2-POP过电位仅为258 m V@10 m A·cm-2。
其他文献
费托合成(FTS)是利用催化剂将合成气(CO和H2)高效转化为液体燃料和高附加值化学品的途径之一,被认为可以有效解决能源问题。钴基费托催化剂具有优异的催化活性、高稳定性和低水煤气变换活性(WGS)的优点,已被广泛应用于费托合成的工业开发中。本文以钴基催化剂作为研究对象,将密度泛函理论(DFT)计算与实验相结合,探究了氧化亚钴、金属钴、金属钴-氧化亚钴界面这三种钴相态的费托催化性能,揭示了钴基费托催
学位
近年来,由于生物相容性差且难以生物降解,合成高分子微球的广泛使用给环境保护和社会的可持续发展带来了新的挑战。凭借可再生、生物安全性高以及可生物降解,天然高分子(如蛋白质和多糖)已经成为制备功能性微球的首选材料。其中,玉米醇溶蛋白(zein)基微球以其独特的性能得到了极大的关注。但是,受限于材料自身的性质以及现有制备方法,目前,有关特殊结构zein微球制备和应用的研究还不多见。基于此,本论文提出了一
学位
甲烷作为天然气的主要成分(≈95%),是地球上最丰富的化石资源之一,也是所有化石燃料中最清洁的,在向可再生化学工业转型的过程中,天然气有望发挥重要的作用。1993年国内大连化物所首次报道了甲烷可以在无氧条件下脱氢生成芳烃(MDA),国内外众多科研团队立即对该反应展开相关研究。该反应的产物简单易分离,可控活化CH4中的C-H键、定向生成工业原料芳烃混合物。本论文利用金属离子交换的方法制备了高分散Fe
学位
贵金属纳米材料因其独特的光学、电学、生物学、催化等特性而被广泛应用各种领域。传统纳米材料的制备方法不可避免涉及化学还原剂的使用或耗时/耗能的步骤,这无疑阻碍了高质量纳米材料的制备及应用。针对这些弊端,本文首先构建了一种高压直流电驱动的气-液微等离子体技术,并基于此技术制备了一系列贵金属纳米材料。针对制备贵金属纳米材料所特有的性质,探索了它们在不同前沿领域的应用。此外,为了满足日益增长的工艺自动化和
学位
层状Li NixCoyMn1-x-yO2正极材料因其高比容量优势而备受关注。Li Ni0.4Co0.2Mn0.4O2材料倍率性能和热稳定较好,但循环性能和放电比容量仍需进一步提高。本文分别采用流变相法、溶胶凝胶法和共沉淀法来制备Li Ni0.4Co0.2Mn0.4O2材料,对共沉淀法进行工艺参数优化,确定制备材料的最佳工艺条件。最后利用掺杂和包覆手段对材料进行改性,并研究其改善机理,从而为此材料及
学位
消费者对绿色、可持续和皮肤友好的化学物质的需求推动了N-脂肪酰氨基酸盐在日用化学及个人护理领域的使用。N-脂肪酰氨基酸盐主要通过肖顿-鲍曼合成工艺进行工业化生产,水相法已经逐步替代有机溶剂/水两相法,用于解决有机溶剂带来的溶剂回收成本高、安全性差及溶剂残留等问题。但水相法的水解副产物脂肪酸钠含量过高,导致反应难以进行和产品质量下降的问题一直亟待解决。此外,原料氨基酸R基团结构的多样性影响N-脂肪酰
学位
粗甘油作为一种褐色、高粘度、有油脂味且富含甘油的粘稠液体,是生物柴油的主要副产,约占生物柴油产量的10%,但因其组成成分极其复杂,常当作废弃油脂处理。近年来,随着碳中和发展战略的提出,全球日渐重视资源开发利用与环境保护问题,如何将大量的粗甘油提纯,并开发具有高附加值的下游产品,成为推进生物柴油产业发展的两大研究热点。本文通过一系列提纯工艺对粗甘油进行精制处理,使其达到一等品精甘油标准,并以提纯后精
学位
石墨烯量子点是一种零维碳材料,表面改性过后的石墨烯量子点可以负载和固定金属,具有提高化学反应过程的催化性能。过渡金属钌具有极好的催化性能,在氢化、氧化和重整反应等多方面具有广泛的探索和应用,但是诸多钌纳米材料在应对水相催化能力上存在不足,稳定性较差、水溶性较差、导电性不足等。因此,通过热解法合成了具有稳定还原和络合金属能力的水溶性石墨烯量子点,采用功能化石墨烯量子点和Ru3+复合的策略,能够充分发
学位
烯烃、炔烃中C=C/C≡C键的氧化裂解和水合反应是合成醛、酮和酯类化合物的有效方法。但是,现有合成方法大多采用金、锰、钌等贵金属催化剂以及有机均相催化剂,尽管具有较高的催化活性和选择性,但也存在反应条件苛刻,催化剂不可回收等问题。同时,目前该类反应大多采用有机溶剂,容易对环境造成污染,不符合绿色化学的发展方向。近些年,光催化作为一项绿色安全的催化技术,在有机合成方面得到广泛应用。其中,聚合物氮化碳
学位
真菌毒素影响食品安全,严重威胁人类生命健康。因此,准确测定食品中的真菌毒素具有重要意义。长余辉发光纳米粒子(PLNPs)在停止激发光激发后,仍能继续发光,这种独特的发光性能使其具有免原位激发、光学性质稳定和信噪比高的优点,在复杂食品基质样品中真菌毒素的检测方面有较大潜力。然而,现有长余辉真菌毒素检测传感器大多为单一波长信号检测模式,检测信号易受仪器效率、检测条件和探针浓度的影响,因而产生误差。比率
学位