论文部分内容阅读
回音壁模式光学微腔由于其超高的品质因数和极小的模式体积,使之成为研究光与物质相互作用的典型器件,得到广泛关注。本文针对高Q值回音壁模式光学微腔内的热非线性光学效应,特别是在微腔模式理论、器件制作工艺、微腔热动力学模型与热振荡现象、微腔折射率调制等方面开展了深入细致的理论和实验研究。主要研究内容如下:1、结合解析法和有限元方法,求解微球腔和微盘腔内回音壁模式的场分布,给出了微腔谐振频率和模式体积的近似解析算法,分析了微腔各种损耗机制对品质因数的影响。建立了锥形光纤与光学微球耦合数学模型,详细分析了其近场耦合相位匹配条件,以及欠耦合、临界耦合、过耦合状态对微腔Q值和透过谱的影响。2、搭建锥形光纤拉伸系统,研究了锥形光纤和微球腔的制作工艺,通过工艺优化制备了高精度的低损耗锥形光纤(小于0.3d B)和高Q值二氧化硅微球腔(107~108),搭建了微腔测试平台;研究了二氧化硅微盘的批量化制作工艺技术,提出了减小表面粗糙度的工艺措施,研制出表面粗糙度达到1.7nm硅衬底二氧化硅微盘。3、详细分析了微腔内热非线性过程,首次同时考虑微腔内的两个散热过程,修正了微腔热动力学模型,分析了不同扫描速度下两个散热过程对微腔内温度场分布及微腔谐振频率的影响。在此基础上,揭示了微腔内普遍存在的热振荡现象的产生机制为泵浦光波动和两个散热过程相互作用所导致,分析了影响热振荡的因素给出了抑制振荡的措施。4、在理论上分析了利用微腔内热非线性光学效应进行微腔折射率调制的特性;并在实验上利用慢的散热过程实现了微腔折射率大范围、高精度调制,利用快的散热过程实现了模式体积折射率小范围、高速调制。5、利用二氧化硅微球在白光照明下实现纳米结构(特征尺寸100nm)的超分辨成像,探讨了微球超分辨成像的机理,分析了回音壁模式在超分辨成像中的作用,并且解释了实验上观察到的超分辨成像现象。总之,通过本论文研究,修正了微腔热动力学模型,揭示了微腔热振荡现象的机理,提出了抑制热振荡的措施,并利用微腔热非线性效应实现了折射率的动态调制等。