聚己内酯多通道神经导管的制备及性能研究

来源 :东华大学 | 被引量 : 0次 | 上传用户:whzjs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
周围神经损伤是临床上常见的疾病,其修复与再生是神经科学领域的研究热点。当损伤距离较短时,周围神经能自我修复,但是对于长距离的缺损,必须借助神经移植物才能完成修复。目前的主要治疗方法是缝合手术、自体或异体移植以及人工神经导管桥接。缝合手术治疗仅适用于短距离(<5mm)的神经损伤,且存在神经束错对和神经断端卷曲会造成组织增生的缺陷;自体移植是临床的“金标准”,但存在来源匮乏、会使供区受损并需要两次手术以及供体与损伤神经尺寸不匹配等问题;异体移植存在免疫排斥反应。因此寻求合适的人工神经移植物来引导、促进周围神经再生,加快功能重建是科研人员努力的目标。最初,生物材料被设计成简单的圆柱形管状中空结构,但是这种人工神经导管的管壁比表面积小,不利于雪旺细胞的黏附和增殖;此外,在长节段周围神经损伤修复中,中空型神经导管的力学性能不足,在降解期间往往会出现块状崩塌现象,对再生神经产生压迫,所以研究人员引入多个管腔内通道来构建多通道神经导管,其设计是模仿神经束的结构。因此,本文以聚己内酯(PCL)为材料,制备出导管直径小于3mm,长度大于2cm,且含有与20个内通道的多通道神经导管用于修复长距离的神经损伤。多通道神经导管制备工艺研究:本课题以注塑成型的方法将不同组份的PCL溶液注入设计的模板中,再结合冷冻干燥法得到多通道神经导管。所用的模板由价格低廉的立方体铁架、橡皮筋、水溶性维纶纱线和塑料空心管为原材料搭建而成。多通道神经导管体外性能测试:理想的人工神经移植物必须具有与植入组织匹配的力学性能和良好的生物相容性,因此本文对制备的多通道神经导管进行了体外实验研究,主要包括理化性能表征和体外细胞相容性检测。
其他文献
在肾移植术后的免疫抑制治疗方面,临床上大多采用三联免疫抑制剂治疗方案,其中霉酚酸类药物在血液中的暴露值与免疫排斥情况息息相关。在临床诊断中,医生通过监测患者术后两周12小时内血液中霉酚酸浓度来测定肾移植患者术后的霉酚酸曲线下面积(MPA-AUC0-12h),判断肾移植患者术后的免疫排斥反应。因此,如何高效地在肾移植免疫排斥领域通过较少的血药浓度采样点预测MPA-AUC0-12h一直是一项具有挑战性
先进的储能技术是现代生活的内在动力,但各式各样的储能技术在使用寿命、效率、功率等方面有很大的差异,电池因其便于携带、成本低等优点脱颖而出。但目前的商用锂离子电池因其能量密度低而难以满足人们日益增长的日常需求,取而代之的是被称为现代技术型社会中最具希望的高能量密度储能设备候选者锂金属电池。锂金属具有高的比容量3860 m Ah g–1和超低电化学势(–3.04 V相对于标准氢电极),可用于电动汽车和
有机太阳能电池具有质量轻、成本低、柔性、可制成半透明器件等优点。活性层在有机太阳能电池的光电转化过程中发挥着至关重要的作用,目前活性层中应用最多的给体材料是基于给电子单元(D)与吸电子单元(A)构筑的交替聚合物。但是随着研究的不断推进,人们发现可以用于构建D-A交替共聚物的给受体单元非常有限。因此,研究人员采用无规共聚的策略将第三单元引入到D-A交替共聚物中,形成1D2A或者1A2D的无规交替共聚
摩擦纳米发电机(Triboelectric nanogenerator,简称TENG)因其能收集身边各种微小能源转化成电能,且具备成本低、输出高、材料来源丰富、能量转换效率高等优势而得到快速发展。TENG可作为供电装置,代替传统电池和超级电容器,为器件提供可持续能源。制备具有柔性、生物兼容性、便于人体携带的TENG逐渐成为研究热点。柔性摩擦纳米发电机,常以复合薄膜制成平面结构形式出现。但这种结构应
精准诊断和高效治疗是提高肿瘤患者生存率的有效途径。其关键技术—设计新型纳米载体平台以克服生物系统中存在的一系列生理或病理障碍,将造影剂或/和治疗剂高效地输送至肿瘤组织依然存在着巨大的挑战。为了减少在血液循环中被网状内皮系统的吞噬和增加在肿瘤组织中对肿瘤细胞的特异性吸附,通常对纳米载体分别进行亲水性聚合物(或两性离子)和主动靶向试剂(如叶酸、RGD多肽等)的修饰,然而其富集依然不是特别理想,且容易触
随着柔性电子领域的迅速崛起与发展,分布式能源的重要性日益增加。摩擦纳米发电机作为一种典型分布式能源,有着器件结构简单、可持续性好以及低频下高效率收集周围机械能的优点。与纺织品结合形成的摩擦纳米发电织物,通常有着粗糙的表面,对提升摩擦纳米发电机的输出性能是有利的。然而摩擦纳米发电织物也存在着输出功率较低、摩擦材料表面电荷密度低及容易出现空气击穿现象等问题,并且现阶段采用的摩擦材料很多是致密的薄膜,透
作为超级电容器的电极材料,聚苯胺的储能性能强烈依赖其形貌和微观结构。研究表明,具有多孔微纳结构的聚苯胺因为可以提供大量表面活性位点以及较短的离子扩散路径等优点,能够充分发挥聚苯胺比电容高的优点。而聚苯胺的形貌和结构又强烈依赖所采用的合成方法与具体的反应环境,往往需要借助于结构导向剂或有机溶剂,还经常需要长时间反应和繁琐的后处理。本文提出了一种新颖的冷冻界面聚合法,无需借助模板或繁琐处理,就能在完全
可穿戴电子产品、柔性显示器等新型电子设备的快速发展以及对其的日益增长需求,使得研究和开发兼具低成本、高能量密度、轻质、环保等特征的柔性电化学储能设备具有重要的研究意义。近年来,柔性超级电容器受到了额外关注,其具有易制造,质量轻,体积小,高柔性,成本低,可与纺织品集成,循环寿命长,充放电速度快以及功率密度高等优点,被认为是为柔性电子设备提供能源的最佳电化学储能装置之一。然而,目前制约柔性超级电容器实
近年来,我国经济的飞速增长和人们生活水平的提高使得机动车保有量与日俱增,现有道路资源的有限和日益增长的汽车保有量之间产生了矛盾,带来了一系列复杂的交通问题。为解决这一棘手问题,智能交通系统(Intelligent Transport Systems,ITS)应运而生,其强大的综合分析能力和智慧引导能力可以帮助车主合理规划出行路线,避免交通拥堵,提高道路通行效率。作为ITS的实现基础,短时交通流预测
随着汽车产业的深入发展,我国的汽车保有量逐年增加,安全、能源和环保等领域面临着严峻挑战,而这些问题都与汽车轻量化都有着紧密的联系。碳纤维复合材料(carbon fiber composites,CFRP)具有“材料可设计性”的特性,能够根据汽车零部件的性能要求来设计微观组分材料和宏观结构参数,是汽车轻量化设计的首选材料。然而,考虑到目前有关基于结构可靠性的CFRP材料与结构一体化设计的研究才开展不