【摘 要】
:
目前,面对不断上涨的能源需求和环境危机,各国都在致力调整能源结构,加大可再生能源所占的比例,其中生物质能源引起了人们的广泛关注。丙烯酸(酯)是重要的有机合成原料,目前丙烯酸的生产主要来源于石化产品,因此开发利用生物质资源来合成丙烯酸(酯)是重要的方向之一。乳酸作为生物质十大平台分子之一,因此乳酸(乳酸甲酯)酸催化脱水制备丙烯酸(酯)的具有重要研究价值。本文针对乳酸甲酯脱水催化剂存在的酸性难调控和稳
论文部分内容阅读
目前,面对不断上涨的能源需求和环境危机,各国都在致力调整能源结构,加大可再生能源所占的比例,其中生物质能源引起了人们的广泛关注。丙烯酸(酯)是重要的有机合成原料,目前丙烯酸的生产主要来源于石化产品,因此开发利用生物质资源来合成丙烯酸(酯)是重要的方向之一。乳酸作为生物质十大平台分子之一,因此乳酸(乳酸甲酯)酸催化脱水制备丙烯酸(酯)的具有重要研究价值。本文针对乳酸甲酯脱水催化剂存在的酸性难调控和稳定性差等问题,尝试使用了可部分还原的WO3和其钨酸盐NiWO4为主体催化剂,通过还原来调控酸性和活性位点;并对它们进行了碱金属磷酸盐或碱金属盐的改性;最后还将WO3负载在脱水选择性较好的CaSO4上,探究对该催化剂稳定性的影响。使用XRD、NH3-TPD、Py-IR等表征方法对催化剂晶体结构、表面酸性等方面进行表征。首先,以还原后的WO3为催化剂时,其乳酸甲酯脱水性能较差。因此对其进行了碱金属磷酸盐的改性,2K2HPO4/WO3上脱水性能最佳,选择性和转化率分别为30.1%和70.7%。其次,以NiWO4为催化剂时反应活性和稳定性与WO3相比均有提升,对其进行碱金属改性,2K/NiWO4上稳定性有显著提高,反应8 h后的转化率为70.1%,平均选择性为50.6%。最后,探究了CaSO4上乳酸甲酯脱水反应,结果表明其酸性条件很适合脱水反应的发生,选择性远高于WO3及NiWO4,为83.2%;经过氢化还原后,CaSO4上脱水性能增加,但失活仍较快,故用W助剂对其进行改性,4W/CaSO4上催化剂稳定性有较大程度的增加,在对其进行的稳定性考察实验中,反应22 h后的转化率为69.2%,与未改性的CaSO4相比,稳定时长增大了3倍以上。由催化剂的表征结果可知,氢化还原会使催化剂表面氧空位浓度增加,活性和酸性增强,但过强的酸性不利于脱水反应的发生,故不同催化剂对还原条件的需求不同;添加碱金属和其磷酸盐助剂可以减弱催化剂的表面酸性,不同助剂与催化剂间相互作用力不同,其表面酸性和产物分布也不同;酸性过弱时,催化剂的活性和脱水选择性较低,因此助剂存在最佳的负载量。本课题中所有催化剂都仅有Lewis酸中心,乳酸甲酯脱水反应在较弱的酸性、合适的酸量下更容易发生。
其他文献
电解水制氢技术是解决化石能源短缺和降低碳排放的有效途径,它的关键在于开发低成本、高性能的析氢反应(HER)和析氧反应(OER)催化剂。层状双氢氧化物(LDHs)材料因其组成结构多样性、价格低廉、合成方法简单等特点,在电催化领域备受关注。然而,电子导电性差和电化学活性表面积有限的缺点仍然限制了它的应用。镍铁合金材料由于镍与铁的协同效应表现出优异的电解水性能,但也存在容易团聚、活性位点少、稳定性差等问
涂料作为一种涂覆在物体表面并在表面形成连续固态薄膜的材料,其形成和发展已经有几千年的历史。但是随着科学技术的进步和人们生活水平的提高,对涂料性能的要求也日趋严格。如今3C电子产品等行业兴起,但是随之而来的是这些产品表面带来的污染问题。由于指纹等污渍附着在产品表面影响观感和使用,清除比较困难而且需要很大的成本,所以抗污材料在20年前成为热门话题。目前为止合成抗指纹材料的方法一共分为三类。第一类是通过
<正>音乐教育是初中教育学科中的重要内容,对初中音乐教师来说,如何通过多元音乐文化的创设和多种教学手段的综合应用有效提升初中音乐课堂教学的质量,创新初中音乐教学方法,是当前教学工作的重中之重。因此,初中音乐教育的开展应当与时俱进,充分吸收现代化的教育理念与教学方法,不断更新教学思路,以创新教学方法的有效应用,提升音乐教育的有效性,实现发展学生音乐素养,提高学生艺术感受与表达能力,促进学生身
甲氧胺盐酸盐作为重要的有机合成中间体,主要用于医药和农药的合成。酮肟醚法是制备甲氧胺盐酸盐的常用方法,但原料中硫酸二甲酯具有高毒性,氯代甲烷易燃易爆且运输困难。随着对环保要求的提高,采用酮肟醚法制备甲氧胺盐酸盐受到了一定限制。而羟胺氧磺酸法制备甲氧胺盐酸盐简单易行,具有研究价值。羟胺氧磺酸法是以羟胺氧磺酸与碱金属醇盐反应制得甲氧胺,再与盐酸成盐制得甲氧胺盐酸盐,但这种方法存在甲氧胺盐酸盐收率较低的
碱性膜燃料电池凭借着可利用价格较为低廉的非贵金属作为催化剂的优势而具有较好的前景。目前,针对于碱性膜燃料电池的研究正处于高速发展的阶段,已经有很多国内外的研究人员深耕于开发新型的碱性膜及碱性离聚物,或制备阳/阴极低铂及无铂催化剂等领域。随着碱性膜燃料电池在材料方面的各种突破,研究者也深入地对电池性能的各项影响因素进行了探索,包括电池内部不平衡的水管理、膜电极的催化剂层和扩散层厚度、催化剂与离聚物的
金属-有机骨架材料(metal-organic frameworks,MOFs)是由多齿的有机配体和金属配位中心(金属离子或金属簇)通过自组装形成的具有周期性网络结构的有机无机杂化材料。由于其比表面积大、孔隙率可调和稳定性好等特点,被广泛应用于吸附、传感、气体储存等领域。然而,目前文献报道的大部分MOFs材料的孔径都在微孔范围内(孔径<2 nm),微孔的存在虽然有助于提高比表面积,但是限制了反应物
随着城市化和工业化的快速发展,人类的活动会释放出越来越多的含氯挥发性有机物(CVOCs),导致PM2.5及臭氧浓度的迅速上升、光化学烟雾和频繁的雾霾天气。其中1,2-二氯乙烷(1,2-DCE)作为CVOCs的典型代表物质,其来源广泛,制药制造和涂布印刷等工业过程都能排放。催化燃烧因为其高效率能耗低的优势而引起了广泛的研究。本文制备了不同晶型的Mn O2和不同拓扑结构分子筛负载Mn催化剂用于1,2-
量子点由于其出色的光学物理性质,在以显示领域为代表的众多领域得到广泛应用。不同于镉系或铅系等含有毒重金属的量子点,In P@Zn S核壳量子点作为一种对环境友好的量子点,满足新型显示领域发光材料安全无毒的需求。但目前In P@Zn S核壳量子点主要的制备方法所需温度高,反应时间长,产量小,不利于进一步推进量子点产业化。本论文中设计了一种基于超重力反应器的新型In P@Zn S核壳量子点制备方式,该
在煤炭的开采以及加工过程中会产生大量的有机废水,这类废水成分复杂,化学需氧量(COD)、色度以及溶解性固体总量较高。近年来,基于臭氧的高级氧化工艺由于具有清洁无污染、有机物矿化程度高的特点,逐渐被应用于煤化工废水的处理。然而,常规的气液接触反应器由于臭氧与废水之间的传质效率不高,往往造成臭氧的吸收效率低、废水处理效果不佳。超重力技术因液相停留时间短、气液传质速率高且设备体积小,在工业有机废水处理领
氨(NH3)作为如今世界上生产量最大的化学品之一,年产量约为5亿吨,它被广泛地应用于农业、化学和制药等各个领域。由于NH3具有高能量密度和氢含量,它也成为最具潜力的可再生氢能载体之一。但是如今合成NH3仍然依赖于传统的Haber-Bosch工艺,需要在高温高压的条件下,由化石燃料提供能源,因此对环境很不友好。电催化的方法能够在温和条件下合成NH3,该方法不仅可以使用清洁能源减少环境污染,同时其反应