论文部分内容阅读
本文主要研究几类非线性椭圆方程变号解的存在性,涉及到的方程包括含有临界指标的拟线性Schr(o)dinger方程,含有分数次Laplacian的Kirchhoff型方程以及含有分数次Laplacian的非线性Choquard方程. 本文共分四章: 在第一章中,我们概述本文所研究问题的背景及国内外研究现状,并简要介绍本文的主要工作及相关预备知识和一些记号. 在第二章中,我们研究RN中含临界指标的拟线性Schr(o)dinger方程-div(g2(u)▽u)+g(u)g(u)|▽u|2+V(x)u=K(u),x∈RN,节点解的存在性,其中N≥3,g:R→R+是可微的偶函数.并且对任意的s≥0,我们有g(s)≥0.此外,我们还假定K:R→R是一个连续函数,位势函数V:RN→R是一个正的径向对称函数.我们发现了上述拟线性Schr(o)dinger方程的临界指标.进一步地,对任意正整数k≥0,我们证明了该方程存在一个恰好变号k次的节点解. 在第三章中,我们研究含有分数次Laplacian算子的Kirchhoff型问题(a+b∫∫R2N|u(x)-u(y)|2/|x-y|N+2sdxdy)(-△)su+V(x)u=f(x,u),x∈RN,极小能量变号解的存在性及其渐近行为.其中s∈(0,1),N>2s,a和b是两个正常数,位势函数V(x)∈C(RN,R)是非负有正下界函数.利用约束变分的方法以及数量形变引理,我们证明了在适当的位势条件下,上述问题有一个极小能量变号解ub.进一步地,我们证明了该变号解的能量严格大于两倍的基态能量.作为这一章的一个附带结果,我们给出了当b↘0时,ub的一个收敛性质. 在第四章中,我们研究含有分数次Laplacian算子的非线性Choquard方程(-△)su+V(x)u=(Iα*|u|p)|u|p-2u,x∈RN,其中s∈(0,1),N>2s,0<α<N,p∈(N+α/N,N+α/N-2s),位势V∈C(RN,R)是正函数并且满足适当的位势条件.Iα是如下定义在每一个点x∈RN{0}的Riesz位势Iα(x):=Aα/|x|N-α,其中Aα=Γ(N-α/2)/Γ(α/2)πN/22α.利用约束变分方法,我们证明了上述方程有一个非负的基态解.利用喷泉定理,我们证明了该方程有无穷多解.进一步地,当p∈(2,N+α/N-2s)时,我们利用约束变分方法和数量形变引理证明了上述方程极小能量变号解的存在性.