论文部分内容阅读
群论是抽象代数学中的一个重要分支,利用子群的性质来研究和刻画整个群的性质与结构一直是群论研究的一个重要课题.同时,研究代数结构,我们往往希望它能够跟图论相结合,无论是用代数的方法去研究图还是用图论的方法去研究代数结构,都是十分有意义的.在该领域,研究图的自同构群一直是一个非常重要且十分活跃的课题.本学位论文对以上两方面进行研究,内容大致可分为两部分:一)子群的广义正规嵌入性对有限群结构的影响;二)广义正交图的自同构群.在第3章,我们引入了几乎SS-嵌入子群的新概念,它是正规子群,S-拟正规子群,S-拟正规嵌入子群,c-正规子群以及s-嵌入子群等概念的推广.我们研究了子群的几乎SS-嵌入性与有限群结构的关系,给出了有限群为p-幂零群和p-超可解群的新的特征性定理,由此推广了一些已有结论.第4章,基于Φ-可补子群以及SΦ-可补子群的概念,我们给出了n-Φ-嵌入子群的概念及其基本性质,讨论了特定极大子群在满足n-Φ-嵌入性条件下有限群的结构,这也说明该思想方法为研究有限群提供了新的有效工具.第5章,我们在前人研究的基础上进一步研究(?)C-子群对有限群结构的影响,分别讨论了同阶子群以及某些极小子群在满足一些给定条件下的有限群的结构,得到一个群属于某些群类和一个群为幂零群的一些判别准则.第6章,在正交图的基础上,我们利用正交空间中的m-维全迷向子空间或m-维全奇异子空间作为顶点集并恰当定义邻接关系,分别构作了奇特征和特征为2的广义正交图,本文中分别把它们简记为Γ和Γ’.6.1节主要研究特征为奇数的广义正交图的自同构群,我们首先给出了图中任意两点间的距离公式并讨论了Γ1(M)和Γ2(M)中顶点的形式及性质,其中M是一个给定顶点,Γk(M)表示顶点集{x∈V(Γ)|d(M,X)=k}此外本节还给出该图中的两类局部结构:极大集与拟四面体结构.在6.2节,我们讨论了特征为2的广义正交图的自同构群.类似于6.1节,我们也研究了Γ’1(M)和Γ’2(M)的性质,并讨论了当k≥2时次成分Γ’k(M)之间顶点的邻接关系,其中M是Γ’中一给定顶点.利用有限群,有限域,矩阵几何等工具我们确定了广义正交图Γ和Γ’的自同构群.