论文部分内容阅读
有机电致发光器件(OLEDs)由于其在固态照明和全彩显示领域的潜在应用,以及其自身具有柔性,自发光,制备工艺简单,可实现大面积发光等优点,引起了全球诸多科研人员的研究兴趣。虽然有机电致发光器件已经部分实现商品化,但是其依旧存在很多问题。在OLEDs器件中,由于金属电极的存在,在金属电极与有机材料界面存在表面等离子体(SPP)模式会严重影响器件的光取出效率。图形可设计的微米尺度的有机电致发光器件(micro-OLEDs)在3D以及高分辨显示领域有着特殊的需求,但是制备micro-OLEDs器件特别是实现器件中微电极的图案化的加工工艺依旧存在很多技术难点。OLEDs器件中常用的ITO透明电极与柔性器件不相容,且价格昂贵。超薄金属薄膜是ITO的杰出替代品之一,但是金属薄膜的Volmer–Weber生长模式导致超薄金属薄膜具有较差的表面形貌和光学电学性质,从而严重影响器件的性能。针对这些问题,本论文从OLEDs器件的电极出发,通过对微结构电极的结构设计和工艺研究以及材料选择,有效地提高了OLEDs器件的性能。本论文取得的研究成果主要包括以下几个方面:1、利用一维周期性微结构金属电极有效解决了OLEDs器件中SPP模式导致能量损耗的问题。我们利用双光束干涉-无掩膜光刻技术制备了周期准确形貌良好的一维二维周期性微结构。我们在基于Alq3发光的绿光OLEDs器件中引入一维周期性微结构金属电极,有效地激发了金属阴极/有机材料界面的SPP模式耦合出射,解决了SPP模式导致能量损耗的问题,使器件的电流效率提高了30%。2、利用二维双周期微结构金属电极激发白光有机电致发光器件(WOLEDs)和双金属电极OLEDs器件中SPP模式耦合出射。我们制备了二维双周期微结构,该微结构包含两个不同的周期,且彼此之间有一定的夹角。我们将二维双周期微结构金属电极引入到二波段WOLEDs中,针对器件的两个发光峰调节微结构的两个周期,通过激发电极/有机界面的SPP模式,在宽波段实现了光取出效率的增强,在不改变器件发光颜色的前提下,使得WOLEDs器件的亮度由21720cd/cm2提高到了40680 cd/cm2,实现了器件37%的电流效率的增加和48%的外量子效率的提高。我们还根据二维双周期微结构金属电极,制备了偏振依赖的颜色可调WOLEDs器件,实现了器件发光颜色在暖白光,标准白光,冷白光之间的相互转换。我们在具有双金属电极的红光OLEDs器件中,引入二维双周期微结构金属电极,利用微结构中两个周期不同的部分,分别激发阳极界面和阴极界面的SPP模式耦合出射,有效地解决了器件中两个电极/有机界面存在SPP模式导致能量损失的问题,器件的效率由17.98 cd/A增加到23.22 cd/A。我们还将二维双周期微结构金属电极引入到有机太阳能电池中,利用SPP的场增强作用,在整个可见光波段有效地提高了器件的光吸收,电池器件的光电转化效率提高了31%。3、利用飞秒激光直写技术(Fs LDW)制备了图案化的还原石墨烯氧化物(R-GO)微电极,并且制备了形状可设计的micro-OLEDs器件。我们采用改进的Hummers方法制备了石墨烯氧化物,并且基于飞秒激光直写技术,利用飞秒激光的光热作用,通过对可编程图案的程序设计,实现了对石墨烯氧化物的图案化还原。利用Fs LDW技术制备的图案化R-GO微电极表面形貌良好,还原程度均匀,导电性良好,分辨率高。我们将制备的图案化R-GO微电极引入到OLEDs器件中制备了发光均匀,图案清晰,亮度高的梯子型和蝴蝶结形micro-OLEDs。4、我们制备了超薄超平滑的Au薄膜,并且利用超薄超平滑Au薄膜代替ITO作电极制备了柔性OLEDs器件。我们利用SU-8对玻璃衬底进行修饰,由于SU-8与Au原子之间的相互作用,有效地抑制了Au薄膜的Volmer–Weber生长模式,在只有几个纳米的厚度下,Au原子就可以形成超薄超平滑的薄膜。我们制备的7nm的超薄Au薄膜的表面粗糙度仅为0.35nm,对550nm波长的光的透过率为72%,薄膜电阻为23.75?/sq。由于超薄Au电极优良的表面形貌以及光学电学特性,我们利用7nm的超薄Au电极制备的OLEDs器件的效率比相同结构基于传统ITO电极的器件提高了17%。我们制备的基于超薄超平滑Au电极的柔性OLEDs器件在机械稳定性测试过程中表现出良好的柔性和机械稳定性。