论文部分内容阅读
随着我国工业水平的快速发展,工业废水量在逐渐增加,废水成分也日趋复杂,处理难度持续加大。面对我国人均可用淡水量的严重不足的现状,进一步提高工业废水的无害化处理效率已经迫在眉睫。混凝法一直以来都是高效处理工业废水的方法之一,但现有的混凝剂存在加量大、处理效率低、难以适应越来越复杂的废水环境等问题,因此利用多种优势技术相结合的方式,开发一种多功能高效复合混凝剂对高效处理工业废水和保护淡水资源具重要意义。本文以传统聚硅酸铝为基础,通过引入磁性颗粒,增加产品磁性;引入阳离子季铵盐以增加产品的电荷量,引入环糊精以增加产品的吸附性,制备了一种带吸附功效的高效磁性复合混凝剂——磁性阳离子聚硅酸铝(GSPSA-MNPs)。利用自制的聚硅酸铝、环糊精聚合物和购置的纳米四氧化三铁为原料,制备得到了磁性阳离子聚硅酸铝复合混凝剂GSPSA-MNPs,同时得了磁性聚硅酸铝(PMNPs)、阳离子聚硅酸铝(GSPSA)。利用膨润土模拟废水优化了物料配比和制备工艺参数:活化 pH 为 1.5、Si02 为 1.8%(wt)、活化时间 5h、Si/Al=1:1.8、熟化时间 10h;β-CD/SA/GTA=1:3:3、反应温度 70℃;GEPCD/PSA/MNPs=4:3:1、改性温度 20℃和改性时间 30min。并利用FT-IR、XRD、SEM、Zeta电位对GSPSA-MNPs进行了表征;结果表明,制备的GSPSA-MNPs是以Si-O-Fe化学键结合而成的带有一定正电荷的纳米级磁性聚合物,其主要为直径为60nm左右的球状结构,且表面含有大量-OH活性基团和空腔结构。利用制得的样品对膨润土和p-Nph模拟废水进行混凝实验。发现引入的MNPs增加絮体沉降的速度,环糊精增强了样品的吸附性能,使得GSPSA-MNPs较PSA拥有更好的去浊和去酚能力,且处理效率得到了提高。为了对比合成类复合混凝剂与复配类混凝剂的差别,利用 PSA、PMNPs 与 CPAM 复合得到了 PSA-CPAM60 和 PMNPs-CPAM40,并对膨润土和p-Nph模拟废水进行混凝实验,发现两者对浊度和p-Nph的去除率最大可达到96.02%和12.36%,但浊度去除效果依然不如GSPSA-MNPs,对p-Nph吸附去除效果上,更是远低于GSPSA-MNPs,再次体现了 GSPSA-MNPs较好的混凝和吸附性能。以实际的采出废水为处理对象,用RSM法优化了三种复合混凝剂处理油田采出水的pH值、投加量、静置时间。在最佳使用条件下三种复合混凝剂GSPSA-MNPs、PSA-CPAM60和PMNPs-CPAM40对采出水的浊度去除率最大分别为96.22%、94.25%、94.31%;对TOC的去除率分别为96.54%、85.32%、92.14%;对Ca2+的去除率分别为86.95%、89.32%、82.24%;同时三者所产生絮体的平均含水率分别为71.1%、80.2%、87.26%,对于浊度、TOC和Ca2+的去除均表现良好,且GSPSA-MNPS所得絮体的含水率远低于常规水平。处理后,采出水各项污染指标大幅度下降,水质较处理前有较大改善,说明将GSPSA-MNPs用在油田采出水的处理中是可行的。