论文部分内容阅读
永磁无刷直流电机所具有的高转矩、高效率等优良性能,使其在现代工业中得到了广泛应用,但是位置传感器的存在给其带来了诸多弊端,同时转矩脉动问题也在一定程度上限制了其在高精度场合的应用。本文分析了几种常见的无位置传感器控制技术,重点研究了反电动势法,并分析研究了低转速运行时非换相转矩脉动及其抑制问题。最后本课题以TMS320F2812芯片为核心,研究了永磁无刷直流电机无位置传感器的控制系统。论文分析了永磁无刷直流电机的工作控制原理,并建立了相关的数学模型,以此为基础研究了反电动势法和非换相转矩脉动抑制等控制策略。反电动势法中,详细分析了模拟中性点过零检测法。而对于非换相转矩脉动问题,分析了永磁无刷直流电机低转速时运行特性,可知此阶段的换相转矩脉动能够得到有效地抑制,提出了运用PWM_ON_PWM调制方式抑制非换相转矩脉动,从而提高低转速永磁无刷直流电机的转矩控制精度。然后在Matlab/Simulink仿真环境里搭建了仿真模型,用以研究验证所提出的控制策略,所得的仿真结果表明所设计的控制系统可以得到良好的性能,PWM_ON_PWM调制方式能够使得非换相转矩脉动得到有效抑制。以仿真结果为基础,论文设计制作了主要包括功率驱动电路和转子位置信号检测电路两部分的控制系统硬件电路。功率驱动电路部分以驱动芯片IR21367为核心搭建而成,同时还有光耦隔离电路和过流过压保护电路;转子位置信号检测电路作为无位置传感器控制系统的重要部分,本文为其设计了模拟中性点过零检测法电路,达到检测反电动势过零点的目的。在CCS3.1软件编译环境下用C语言完成控制系统软件的编程,由于采用了模块化编程思想,使其具有较好的扩展性和通用性,方便用户的编程设计。最后对整个控制系统进行充分调试,在确定了控制系统的可靠性和稳定性之后,得出了电机一系列的工作波形,并对转速数据进行处理,得出了电机转速曲线。通过结果分析可知,本文所设计的基于无位置传感器的控制系统,不但能够稳定运行,而且比有位置传感器的控制系统取得更好的控制效果。