论文部分内容阅读
本文研究了染料敏化电池的制备工艺,并且在设计和制备了不同形貌的光阳极半导体层及TiO2材料的基础上,分别制备了联吡啶钌类及卟啉类染料敏化太阳能电池,通过优化材料性能、光学性能及电化学性能提升电池的光电转化效率。采用商品化的P25纳米颗粒为原料,通过调节分散溶剂和分散方式得到制作最为均匀浆料的方法。对比和研究了浆料涂布的工艺及厚度,确定以丝网印刷的方法制备高效的染料敏化太阳能电池的工艺。通过微乳液法合成了高比表面积的TiO2材料,并以此为散射核心制备出具有核心渐进结构的染料敏化太阳能电池。通过光电转化效率测试证明具有渐进结构的电池的光电转化效率达到7.34%,相比普通均一结构电池提升了20.43%。以porphyrine-1为敏化剂,制备了核心渐进卟啉类染料敏化太阳能电池,光电转化效率达到4.04%。通过对比发现,渐进结构的半导体层更有利于提升卟啉类电池的光电性能,相比与普通均一结构的电池提升了21.34%。利用模板法制备了具有不同孔径的半导体层,通过对比其材料学及光学性质,证明了半导体层中孔径越大,光吸收及散射作用越强,但单位光阳极的染料吸附能力越差。通过将不同尺寸孔径的半导体层按照不同顺序涂布,制备出具有孔径渐进结构的染料敏化电池。通过光电性能测试证明,具有孔径渐进变大的染料敏化电池的光电转化效率最高,达到7.80%。交流阻抗测试表明,孔径渐进变大结构的半导体层可以有效的渗透电解质,从而降低电池内阻,进而得到更好的光电性能。以porphyrine-2为敏化剂,制备了孔径渐进卟啉类染料敏化太阳能电池,光电转化效率达到6.01%,比普通光阳极制得电池的光电性能提升14.48%。采用多种方法制备了不同形貌但尺寸近似的TiO2材料,将它们制备成均一或多层结构的染料敏化电池,并对比和分析其光电性能。通过研究发现,亚微米级TiO2更适于作为电池中的散射层,最高可以使联吡啶钌类电池的光电转化效率达到6.21%。通过电化学测试证明具有连续结构的TiO2可提升电池的电子传输寿命。利用porphyrine-3制备出具有多种散射层结构的卟啉类染料敏化电池,发现无论哪种TiO2材料制备的散射层均可提升卟啉类电池的光电性能,而且提升幅度较联吡啶钌类电池大。通过分析单色光量子效率的数据,发现亚微米级材料制备的散射层能有效的提高450-600nm的光谱吸收,弥补了卟啉分子字在500nm左右的吸收缺陷,从而大幅提升光电性能。以简易法制备的纳米颗粒团聚型球,微球为锐钛矿掺杂少量板钛矿相的TiO2,并可以通过尿素和聚乙烯吡咯烷酮控制微球尺寸。尿素具有提高反应环境碱性的作用,有助于微球团聚及尺寸变大;聚乙烯吡咯烷酮束缚微球进一步团聚生长,阻碍微球进一步团聚而变大。将简易法制备的团聚型球制备成染料敏化太阳能电池并测试其光电性能,其光电转化效率可达6.61%,优于文献法制备的团聚型球及其他亚微米级材料,适于作为染料敏化太阳能半导体层和电池的材料使用。