论文部分内容阅读
氯霉素作为已被禁止使用的兽药,国内外对其检测和监控极为重视,但现有的氯霉素检测技术在样品净化处理中均采用选择性较低的非特异性固相萃取柱,净化效果不够理想,降低了检测的灵敏度。为改善样品净化效果,提高氯霉素检测的灵敏度,本论文改进了氯霉素的检测方法,并采用目前国内外许多生化研究者在药物分析中所采用的分子烙印技术制备了氯霉素分子烙印固相萃取柱,将其应用于生物制品或动物源性食品中氯霉素或氯霉素类抗生素的检测,解决了目前氯霉素类抗生素检测中面临的难题。主要研究内容与结果如下: 1.研究了可一次完成测定和确证氯霉素、甲砜霉素和氟甲砜霉素的LC/MS2法,该法前处理采用微量法,具有操作步骤少、有机试剂消耗量少、测定周期短等优点,其检测限为0.01μg/kg,达到目前国际上检测氯霉素类抗生素的最高水平,为国内外首次采用液质联用仪同时测定和确证氯霉素、甲砜霉素和氟甲砜霉素。对较为成熟的GC/ECD法和GC/MS/NCI法进行了必要的验证。 2.在分子烙印聚合物的制备中,烙印分子与功能单体及交联剂的比例、致孔剂、聚合温度都对所制备的分子烙印聚合物的结合特性具有影响作用。对于以甲基丙烯酸作为功能单体的聚合反应,最佳聚合条件为:烙印分子与功能单体及交联剂的摩尔比例为1:2:20;以四氢呋喃作为致孔剂;聚合温度为50℃。 3.形态学研究表明:不同分子烙印聚合物具有不同的表观密度、溶胀率、热稳定性以及表面形态与表面结构;而且聚合物中具有不同含量游离羧基,其中优化聚合物P1中的游离羧基相对较多;分子烙印聚合物相对参照聚合物具有较多的微孔和较小的表面积;120℃的热处理对于孔结构的影响不大,而180℃的热处理则会对微孔造成严重的破坏。 4.吸附动力学研究表明:分子烙印聚合物P1的专一性结合作用大于其非选择性吸附作用;分别采用Scatchard模型、Langmuir模型、Freundlich模型以及Langmuir-Freundlich(LF)模型对分子烙印聚合物P1的结合特性进行分析,通过比较发现LF模型最适用于非共价型分子烙印聚合物P1的结合特性的分析。 5.固相萃取条件优化研究表明:以聚合物P1制备的分子烙印固相萃取柱可以采用乙醇体积含量为5%的乙醇/水作为上柱溶剂、甲醇体积含量为20%的甲醇/水作为淋洗溶剂、乙腈体积含量为40%的乙腈/水作为洗脱溶剂;分子烙印固相萃取柱与传统的C18柱相比具有更高的亲和力并具有更大的柱容量。 6.制备的分子烙印固相萃取柱对氯霉素、甲砜霉素和氟甲砜霉素都表现出很好的固相萃取能力。对实际加标样品中氯霉素或氯霉素、甲砜霉素和氟甲砜霉素的测定表明,分子烙印固相萃取的净化效果优于液—液萃取以及C18柱的固相萃