双线性或沿曲线Hilbert变换在消失广义Morrey空间或Lebesgue空间上的有界性

来源 :湖北大学 | 被引量 : 0次 | 上传用户:suna_lili82
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
这篇论文包含两个部分:(i)某类双线性算子在消失广义Morrey空间上的有界性;(ii)沿空间可变曲线的Hilbert变换在Lebesgue空间上的有界性.在第一部分中,作者将考虑满足如下条件的双线性算子T:存在一个依赖于T的正的常数C(T),使得对任意有紧支集的可测函数f和g,t∈R且0<|t|≤1,x∈Rn以及0n(?)supp(f(x-t·))∩supp(g(x-·)),其中(?),作者利用模mp,φ(T(f,g);x,r)的估计、Holder不等式、Minkowski不等式、及变量替换得到了算子T在消失广义Morrey空间V0Lp,φ(Rn)和V∞Lp,φ(Rn)上的有界性,以及次双线性极大算子M在消失广义Morrey空间V(*)Lp,φ(Rn)上的有界性,并将其应用于调和分析中的一些经典(次)双线性算子.作为副产品,作者证明了在Lebesgue空间上有界的前提下,T在广义Morrey空间Lp,φ(Rn)上的有界性.最后给出一些典型的例子.在第二部分中,设Φ:R3→R2是一个可测映射,称为可变空间曲线.作者首先使用Fourier逆变换公式、Fubini定理和Plancherel公式,将这一部分主要定理的证明归结为振荡积分Sμ,v的有界性证明.然后再通过数学归纳法和变量替换,进一步将这一部分主要定理的证明归结为振荡积分S(f)的有界性证明.为此,我们首先将S(f)分解为积分域限定在环形区域内的其他振荡积分的和.然后,利用Fourier逆变换公式、Fubini-Tonelli定理、Cauchy-Schwarz不等式、数学归纳法和振荡积分的Van der Corput型估计等工具,作者证明了Φ(x,t):=(t,P(x1)γ1(t),Q(x1)γ2(t)),γ1,γ2 ∈ C3(R)时,沿可变空间曲线 Hilbert变换HP,Q,γ1,γ2的有界性.此结果将J.Chen和X.Zhu的结果从平面曲线推广到了空间曲线.
其他文献
当前,如何在零磁场下实现对磁矩有效调控是自旋电子学研究领域重要研究内容之一,通过自旋轨道力矩(SOT)效应而实现电流驱动磁化翻转是实现该调控的一种重要方法。为此理解电流-自旋流相互转换的物理性质非常重要。传统的SOT体系中,如当我们在重金属/磁性材料薄膜中施加膜面内电流时,由于自旋轨道耦合效应重金属层会产生与电流方向垂直的自旋流或自旋累积,从而实现对磁性层磁矩的调控。近期发现在对称性破缺时可能出现
幂零群是代数学里的一个基本研究对象。设R是含幺交换环,记U(n,R)是R上所有单位上三角矩阵作成的群,它是幂零类等于n-1的幂零群,这是幂零群中最基本的群例。熟知U(n,R)的上、下中心列是重合的,不过U(n,R)的子群的上、下中心列可以相差甚远。对有理数域Q,取U(n,Q)的子集(?)其中Gij为有理数加群(Q,+)的子群,1
纠错码理论是信息论的重要内容,可以有效提高信息传输的可靠性,具有重要的研究价值.循环码作为线性码的一类重要子码,基于其具有良好的代数结构以及特殊的性质,我们可以利用代数方法对其进行研究,同时也较容易通过硬件实现其编码和解码.在实际生活中,循环码在通信系统、数据存储系统以及消费类电子产品等方面具有广泛的应用价值.近些年来一个热门研究课题是最优循环码的构造,尤其是对由少量零点生成的循环码的最优性的研究
完全非线性偏微分方程理论起源于古典微分几何中的Weyl问题和Minkowshi问题,以及K¨ahler几何中Calabi猜想的研究.经历上世纪70年代的突破,完全非线性偏微分方程目前已经发展成为一个非常活跃的重要数学分支.k-Hessian方程是一类重要的完全非线性偏微分方程,它出现在预定Weingarten曲率问题,Minkowski问题等一系列重要的数学问题中.本文我们考虑了抛物型k-Hess
这篇论文分为两个部分:(i)双线性分数次积分在消失Morrey空间上的有界性;(ii)沿曲线的分数次积分在Lebesgue空间上的有界性.一方面,作者建立了双线性分数次积分算子Bα和次双线性分数次极大算子Mα在广义消失 Morrey 空间V0Lp,φ(Rn),V∞Lp,φ(Rn)和V(*)Lp,φ(Rn)上的有界性.为此,作者首先用两个经典分数次积分算子Iα的乘积来控制Bα,得到了mq,φ(Bα(
环上的单位上三角矩阵群是幂零群的一个非常重要的群例,并且具有非常整齐的结构,其上、下中心列是重合的.一般地,其子集并不构成一个群,即使在成群的情形下,其上、下中心列的规律也变得复杂.环上的上三角矩阵环构成的Lie环也是幂零Lie环的一个基本例子,其上、下中心列也是一致的,其子集一般也不构成一个Lie子环,即使在构成Lie环的前提下,其上、下中心列的结构也变得很复杂.本文将以整数环上的上三角矩阵环的
有机磁性材料及其磁性形成机理一直是物理学、化学和材料学中的重要研究课题。近年来,随着计算物理的兴起,双自由基分子和有机金属三明治团簇的结构和磁学性质的理论探索受到广泛关注。本论文首先介绍了研究背景和基于密度泛函理论的第一性原理计算方法,然后系统地研究了不同耦合子对双自由基分子的磁性影响,以及不同配体对有机金属三明治团簇的结构和磁性影响。本论文的研究工作包括:我们选取不同的对苯撑聚合分子及其衍生物作
众所周知,曲率流的研究起源于几何不等式的研究,其中曲率流的扩张性在证明超曲面的不等式中发挥重要的作用,由此吸引了众多学者,最著名的是Huisken和Ilmanen的研究,他们利用逆平均曲率流证明了Riemannnian-Penrose不等式.随着研究的深入,逆曲率的存在性和收敛性问题不仅在证明几何不等式方面发挥重要作用,同时也在凸几何的Minkowski问题等方面有着重要应用.因此也吸引了众多专家
有关矩阵方程的理论和应用在国内外已经有比较系统深入地研究.矩阵方程在众多科学领域都有着广泛的运用.M.Asuncin Beitia在1985年考虑了矩阵方程(AX-XA)W=0的解空间的维数问题,即矩阵方程AX-XA=0限制在子空间W上的解空间的维数.通过计算与对角矩阵交换的矩阵子空间,得到了当A为对角矩阵时,矩阵方程(AX-XA)W=0的解空间的维数.本文将从Frobenius关于给定矩阵中心化
设G是有限群,用B(G)表示群G的Burnside环,本文主要围绕了Burnside环的幂等元进行研究。通过本原幂等元公式(?)我们可以知道最主要的就是求解其中的莫比乌斯函数μ(K,H),进而得出B(G)的本原幂等元.论文分了以下几部分来写:第一部分是给出了群作用与G-set的介绍和相关定理的证明,还有范畴的定义,这是论文的预备知识部分,也为后面部分的证明和计算提供理论基础。接着回顾了Burnsi