论文部分内容阅读
本文以聚苯胺(PANI)-银同轴纳米电缆的制备、表征及其与多种酶复合后制成的生物传感器的性能研究为主要内容。测试了以聚苯胺-金属同轴纳米电缆阵列为基本元件制成的尿酸、胆碱、维生素C、多巴胺、葡萄糖生物传感器的性能。本文首先利用二次铝阳极氧化法在草酸溶液中得到多孔铝阳极氧化膜(AAO)。并以此制成AAO电极,用于后续纳米线及电缆阵列的制备。这种AAO电极是优良的纳米模板,具有很好的发展前景。通过直流电沉积在AAO孔道内得到了直径不同,长度为20μm的PANI纳米电缆阵列。利用二次电沉积方法获得了聚苯胺外皮层厚度、直径不同的聚苯胺-钴、聚苯胺-铜、聚苯胺-银同轴纳米电缆阵列。测试并分析了以上PANI纳米线及电缆的电导率。研究发现,聚苯胺厚度相同的PANI-金属纳米电缆阵列,其电导率随于直径正相关,而对于直径相同的PANI-金属纳米电缆阵列,其电导率与聚苯胺厚度负相关,以上现象是由复合方式决定的,由于聚苯胺导电性较小,随着聚苯胺比例增加,纳米电缆整体电导率减小。首次制备了尿酸氧化酶/聚苯胺-Ag纳米电缆阵列尿酸传感器。研究发现,聚苯胺-Ag纳米电缆阵列具有良好的导电性,加速电子在尿酸氧化酶上的传递,且纳米尺寸效应明显增加了电极的比表面积。其氧化峰电流与尿酸浓度存在着良好的线性关系。线性方程为Y=1.323X-0.062。测试了长度、外皮厚度、直径不同的PANI-Ag同轴纳米电缆阵列传感器在多巴胺、维生素C溶液中与不同结构的尿酸氧化酶酶/PANI-Ag同轴纳米电缆传感器在尿酸溶液中的响应曲线,并研究了结构变化对灵敏度的影响。结果发现,灵敏度与电缆长度近似线性正相关。传感器的灵敏度随PANI厚度增加而迅速降低,当PANI厚度超过5nm后,灵敏度迅速下降到0.3左右,之后随PANI厚度增加而缓慢下降。传感器的灵敏度随电缆直径增加而降低。首次制备了胆碱氧化酶/聚苯胺-Ag纳米电缆阵列尿酸传感器,研究了此电极的电化学行为和热力学稳定性。研究发现,此种纳米电缆阵列氧化峰电流与胆碱浓度存在着良好的线性关系。线性方程为Y=1.227X-0.0122。首次制备了GOD/TiO2/PANI-Ag纳米电缆阵列葡萄糖传感器。此传感器上的氧化峰电流与葡萄糖浓度存在着良好的线性关系。线性方程为Y=1.335X-0.086。总之,本文首次制备了多种酶/(TiO2)/PANI-Ag纳米电缆阵列传感器,其抗干扰性能优良,灵敏度高,具有巨大的应用前景。