【摘 要】
:
机器学习已然成为现代科学的基石,它被广泛地应用于所有科学领域。然而,它于计算电磁学(CEM,Computation Electromagnetics)算法相结合还有待研究。在本文中,我们将基于深度学习(DL,Deep Learning)的机器学习方法与传统的FDTD(Finite-Difference TimeDomain)算法相结合,研究DL-FDTD算法原理和实现技术,并应用在计算电磁学中。本
论文部分内容阅读
机器学习已然成为现代科学的基石,它被广泛地应用于所有科学领域。然而,它于计算电磁学(CEM,Computation Electromagnetics)算法相结合还有待研究。在本文中,我们将基于深度学习(DL,Deep Learning)的机器学习方法与传统的FDTD(Finite-Difference TimeDomain)算法相结合,研究DL-FDTD算法原理和实现技术,并应用在计算电磁学中。本文首先提出了一种基于DL的FDTD算法,并使用循环卷积神经网络RCNN和多层感知器MLP两种不同的神经网络法对FDTD算法进行阐述,并与已有的工作进行了对比,最后通过在两个数值算例对算法的相对误差进行对比,可以看到本文提出算法在已有工作基础上,进行了有效改进,降低了已有工作的相对误差。本文还提出了一种基于DL的PML吸收边界条件。该吸收边界条件基于LSTM神经网络,通过对更高层数的PML的数据集进行采样并进行训练,得到了只需要一层的基于LSTM网络的PML吸收边界条件,对于传统一层厚度的PML边界条件反射系数更小,并通过数值算例验证了算法的正确性。本文接着分析了如何开发一款通用电磁仿真软件,从工程需求,系统架构,核心功能模块等部分进行了分析,并展示了使用最新C++语言标准编写的部分核心模块代码,使用数值算例证明了代码的有效性。最后作为展望,本文分析了使用机器学习解决实际工程问题的例子,如使用机器学习解决电磁逆问题,计算雷达横截面积(RCS)等。我们相信将深度学习与传统的计算电磁学方法相结合一定会是以后计算电磁学发展的一个热门话题。
其他文献
机器人在人类日常工作和生活中的应用早已相当广泛,其中的一个领域为下肢外骨骼机器人方向,应用场景遍布医疗、军事和工业,具体可分为助力和康复训练机器人。本文选取下肢外骨骼这一课题正是为了分析参数在人机耦合力中的作用以及帮助行走不便的人实现助力和康复训练为目标。在对国内和国外外骨骼机器人发展现状了解后,确立了以人机耦合力为目标在轨迹跟踪中进行分析,为以后的更加深入的研究奠定一定的基础。本文主要做以下工作
伴随着表面等离激元共振(Surface Plasmon Resonance,SPR)传感技术的不断发展,光子晶体光纤(Photonic Crystal Fiber,PCF)表面等离激元共振传感器也日益成熟,在生物医学、环境监测等领域拥有巨大的发展前景。本文设计了一种准D型PCF-SPR传感器,利用COMSOL Multiphysics数值分析软件对其传感特性进行了分析,并对其结构参数进行了优化。本
随着光纤传感器被广泛应用到生产生活的各个领域,生物医学的发展也对光纤传感器的性能提出了新的要求,普通的光纤传感器存在材料损耗大、测量精确度低等问题。因此,为了适应生物医学检测的灵敏度要求和临床实验需要,一种用于检测生物细胞是否癌变的光纤传感器的研究日趋活跃,其特征为在普通生物医学光纤传感器的表面覆盖纳米金颗粒,利用纳米金颗粒的表面等离子体共振对效应可以有效的增加光纤传感器的灵敏度。然而,目前的研究
油田作业区的生产和建设,安全有着举足轻重的地位,智能化的监控管理可谓是生产的一大步,不仅可以节约人力成本,工作效率也会得到明显的提高。本文在基于这样的课题背景下,从油田工作区工作人员的人脸验证入手,研究和设计了基于深度学习的图像增强网络和人脸识别网络,最终建立起完整的人脸识别系统应用在油田视频监控平台上。本文的主要内容包括:首先进行了深度学习的研究,并在对户外图像增强算法DSLR-Quality
在工业4.0时代,“数字化双胞胎”成为众多企业向数字化、智能化转型的战略法宝。其核心是将现实生产制造中的各个环节通多数字化手段虚拟到数字化平台中,形成虚拟生产制造和现实生产制造的镜像。因此,数字化双胞胎概念的提出对优化整个企业流程、提升企业竞争力起着至关重要的作用。特别是在智能制造行业中,它势必会推动智能制造的快速发展。但是,目前国内很少有企业将数字化双胞胎的概念运用到接近传感器中。尤其是工业流水
肝细胞癌(hepatocellular carcinoma,HCC)是一种常见的恶性肿瘤,其在全球癌症相关死亡人数中排名第三。目前,HCC的早期检测方法主要有血清标记物检测与影像学检查。其中,血清标记物的灵敏度不高,无法鉴别大约1/3以上的肝癌患者。影像学检查对于直径<2厘米且分化较好的早期肿瘤的诊断敏感性约50%左右。因此,对于影像学检查难以辨别的早期肝癌组织中发生的微小病理改变,通常采用肝穿刺
随着第五代移动通信系统(5G)的商用化逐渐落地,毫米波频谱资源会变得逐渐稀缺,此时比毫米波频段更高的太赫兹(THz)频段必将是未来通信发展的主要趋势。近年来,THz通信已被公认为可以为第六代无线通信系统(6G)提供足够频谱资源和超高数据速率的有前途的技术。由于THz信号路径衰减以及分子吸收十分严重,长距离通信会对信号强度造成很大程度的损害,所以短距离室内场景是目前研究THz通信最适用的场景。然而,
随着以太网的日益发展,局域网的复杂程度也随着用户数和网络终端的增多而越发提高。为了保证局域网运行环境的健康稳定,在局域网的故障管理过程中,网络管理员需要对网络的整体运行状态把控和对网络故障进行成因分析和经验式诊断。但由于局域网往往承载着特殊业务,传统方法非常耗时耗力,于是现阶段对故障诊断的响应以及智能程度提出了新的要求。因此,本文从深度学习角度出发,研究了基于卷积神经网络模型的网络故障诊断方法。本
量子力学本身的特殊性质使得量子算法在解决某些问题上具有量子优势。本文着眼于量子查询算法以及量子强化学习算法,提出了两种不同的解决特征值问题的量子算法,这两个新的方法相比较于经典算法都具有量子优势。在第一个工作中,我们受到不动点搜索算法的启发,提出了基于查询的方法来解决特征值求解问题。我们将此问题转化为基于查询的搜索问题,并且将未知的特征态设定为所求问题的目标态。我们的方法主要思想是通过不动点Gro
随着信息时代的到来,计算机不仅促进了社会的发展,也改变着人们的生活。但冯诺依曼体系计算机的发展将会逐渐受到限制。近些年,量子计算逐渐受到人们的关注,量子计算中存在纠缠和叠加等特性,可以利用这些特性实现加速。将量子计算与经典的机器学习算法相结合,有望解决数据量巨大和训练速度缓慢等棘手的问题。本论文主要分为两部分,一部分我们主要介绍了量子计算的基础和量子变分电路研究现状及背景,量子变分电路是在量子本征