论文部分内容阅读
钢铁作为机械关键零部件和装备应用最广泛的材料,在摩擦工况中时常产生不可逆损伤,轻则造成装备运行受阻和资源浪费,重则机毁人亡。控制钢铁材料摩擦损耗的首要任务就是系统、深入的研究其摩擦磨损特性,尤其是摩擦接触表层的塑性变形、组织结构演变、性能及成分改变与摩擦学行为之间的关系。与此同时,许多钢铁零件还服役于磨损载荷和疲劳载荷的共同作用下,即磨损—疲劳工况,如斗齿、钎具、柔轮和火车轮轨等。钢铁材料的磨损—疲劳行为与其摩擦磨损特性关系密切,摩擦磨损导致磨损—疲劳的失效行为与单一磨损失效或疲劳失效有所不同。它与摩擦磨损导致的表面材料流失、塑性变形和结构演变等都有关联,且在不同疲劳应力下的表现还有所差异。这使得零部件的磨损—疲劳寿命预测变得非常复杂。因此,如何揭示钢铁材料的摩擦磨损特性及其对磨损—疲劳行为的影响机制,建立对应的磨损—疲劳裂纹扩展模型,已成为评价钢铁材料的抗磨能力和指导钢铁材料表层结构设计,以及预测零部件磨损—疲劳寿命所面临的关键基础问题和核心技术。基于此,本论文重点研究了板条马氏体钢的干摩擦磨损特性,深入研究了摩擦接触表层的塑性变形行为和组织结构演变规律及其对摩擦学行为的影响机理。首次揭示了干滑动摩擦过程中的板条马氏体动态结构演变、非晶化和自润滑等科学问题的机制,并提出了相应的物理模型。结合针对应力场和裂纹扩展面的线弹性力学分析,研究了干滑动摩擦磨损特性与磨损—疲劳裂纹扩展的关联性,建立了磨损—疲劳裂纹扩展模型。首创了有别于接触疲劳(如钢轨与车轮工作环境)的大位移滑动摩擦与旋转弯曲应力共同作用下的磨损—疲劳测试方法和装置。采用上述方法和装置研究了板条马氏体钢的磨损—疲劳行为,阐明了摩擦磨损对磨损—疲劳寿命的影响规律。这一系列成果对研究钢铁材料的干摩擦磨损特性和减磨方法具有理论指导意义,也为在多载荷条件下零部件的磨损—疲劳寿命预测和表面强度设计提供了理论依据。主要结论如下:1、在特定载荷和滑动速度条件下,板条马氏体钢盘与碳化钨球在干摩擦接触过程中产生了自润滑现象,对应的磨损机制由最初的磨粒磨损、氧化磨损和粘着磨损向氧化物的分层剥落转变。干摩擦表面温升可达200500℃,提供了表面氧化和纳米级氧化物颗粒的形成条件。自润滑现象的产生与表面形成的纳米级氧化物颗粒(Fe2O3和Fe3O4)密切相关,而这些纳米级氧化物颗粒又是摩擦接触表层结构经历塑性变形和氧化后的产物。2、干摩擦接触表层塑性变形的计算分析和实验研究结果表明,在考虑摩擦的情况下,应力偏张量第二不变量的最大值位于材料接触表面,且随深度改变呈梯度变化。应力应变的梯度变化促进了表层梯度结构的形成,即纳米层片结构→弯折的马氏体→基体。接触表面下的板条马氏体经历了严重塑性变形→几何必须位错增生→形成纳米层片结构的过程,据此,建立了接触表层内的马氏体结构动态演变模型。3、接触表层的严重塑性变形促使了板条马氏体向纳米层片结构的转变,这些纳米层片结构在塑性变形层内进一步产生了氧化和非晶化。非晶化包括固态局部非晶化和机械混合非晶化两种形式。通过研究非晶的形成过程,建立了摩擦磨损过程中的非晶化形核能量模型。采用该模型可计算形成非晶所需要的临界位错密度值,再对比实际位错增殖情况,可判断是否具备形成非晶的条件。研究结果表明,纳米层片结构界面处的高密度位错和缺陷集中是产生非晶化的必备条件。4、不同元素含量、不同含碳量的板条马氏体和珠光体钢的干摩擦过程中均产生了自润滑现象,只是对应的摩擦载荷和速度有所区别。以纳米尺度表征了不同自润滑层的内部结构,获得了自润滑层的主要形成机制:1)表层结构经历严重塑性变形并形成纳米层片结构;2)纳米层片结构产生氧化和非晶化行为;3)纳米层片结构脱落形成磨屑后在表面持续经历剧烈塑性变形;4)包含纳米层片结构的磨屑进一步细化和氧化,最终形成纳米级氧化物颗粒并被压实在表面。5、摩擦磨损导致材料表层流失、接触表层塑性变形、表面形成接触应力场和形成纳米层片结构。这将直接影响磨损—疲劳的损伤和断裂形式,摩擦磨损特性对磨损—疲劳裂纹扩展的具体影响包括:改变裂纹萌生位置、促进表面裂纹的形成(接触点的剧烈变形)、造成裂纹扩展面偏转(接触应力场)、改变裂纹扩展路径(塑性流变)和消除表面裂纹(磨损)。据此,建立了磨损与弯曲疲劳共同作用下的磨损—疲劳裂纹扩展模型,可充分反映摩擦磨损特性与磨损—疲劳裂纹扩展的关系。6、采用自主设计的磨损和弯曲疲劳载荷共同作用的磨损—疲劳实验装置,结合前期建立的磨损—疲劳裂纹扩展模型,研究了板条马氏体钢的磨损—疲劳寿命规律。实验结果表明,当弯曲应力设定为试样的疲劳极限值时,滑动摩擦造成表层形成塑性变形层和纳米层片结构,迫使裂纹朝平行于表面方向扩展。再加上磨损对表面裂纹的磨除作用,磨损—疲劳寿命较长;当弯曲应力高于疲劳极限时,摩擦载荷较小的情况下,磨损—疲劳寿命较长。但增大摩擦载荷将急剧降低磨损—疲劳寿命;最后,在其它实验条件固定的情况下,提高旋转速度将使表面磨损机制由氧化磨损和磨粒磨损转变为粘着磨损,导致磨损—疲劳寿命大幅度降低。