论文部分内容阅读
舰船在战时执行任务过程中不可避免会遭到敌方武器的攻击而造成破坏。接触爆炸会造成舰船结构的破损同时殃及设备,而非接触爆炸一般并不击穿船体结构,却会造成船用设备大范围的破坏。二次大战以后,由于舰船任务的执行完全依靠大量的机械电子设备,而设备的抗冲击能力通常比船体弱,因此设备的抗冲击成为舰船抗冲击工作的重要内容。显然,研究舰船非接触水下爆炸的破坏效应对于提高舰船的生命力和战斗力具有重要工程应用价值。舰船抗水下非接触爆炸研究主要包括四个部分。即非接触水下爆炸的流场特征(水下爆炸载荷)、瞬态流场与结构相互作用所决定的舰船动响应分析方法、以弹塑性动变形响应分析为依据的舰船结构水下爆炸安全性评估与防护技术、以船体结构动响应为输入条件的船用设备冲击环境的确定方法及相应的设备抗冲击设计分析方法。其中自然包括理论研究、试验研究与工程应用技术研究三个方面。本文针对这四部分的内容,侧重于分析预报方法开展了系统的研究。 水下爆炸载荷是舰船水下爆炸动响应的激励源,爆炸载荷的准确描述是保证舰船爆炸动响应分析精度的基础。木文首先应用库尔的经典水下爆炸气泡运动理论计算出气泡的运动和脉动的压力波形,再依据波形相似的原则寻找波形模拟函数,用冲量相等的原则确定波形参数,得出了从冲击波到气泡脉动压力整个过程对水下爆炸载荷进行模拟的解析公式。该公式综合考虑了爆炸药量、爆炸距离、爆炸深度和观测点方位等因素的影响。利用该公式进行水下12~150m处1~1000kg药量爆炸产生的爆炸载荷,并与数值计算结果比较,表明该公式具有良好的预报精度,可供工程使用。 水下爆炸作用下舰船的动响应理论是舰船抗冲击设计的基础。它一方面能够预报舰船结构的破坏,另一方面能够提供设备基础的冲击环境,为设备抗冲击分析提供输入载荷。流固相互作用效应对结构承受的载荷和结构的响应都有非常大的影响,是舰船水下爆炸动响应分析中的难点。国际上常用二阶DAA方法作为处理流固耦合环节的手段。本文针对DAA方法不适合于分析敷有声阻抗与水差不多的声学材料(如玻璃钢与消声瓦)的船体结构与水下冲击波相互作用的局限性,依据声波的反射和透射原理对二阶DAA方法的高频段进行了改进,发展并提出了能够分析声学材料流固相互作用的ADAA方法(Acoustic DAA),拓展了应用范围,使现有的二阶DAA方法成为它的一个特例。进而推导了ADAA方法与结构有限元方法联合求解的Partitioned计算方法,建立了舰船水下爆炸动响应数值计算的一套方法与程序。同时本文还研究了DAA方法状态变量的对称性,应用其对称性,大大提高了舰船水下爆炸动响应的计算效率。 舰船仆沾触水卜爆什汕八<叫勺理沦与广门u 舰船结构是所有功能系统的载体和安装平台,结构的水下爆炸安全性直按影响整个舰船的牛命力。水下非接触爆炸作用下结构的破坏以其弹塑性动变形为特征。为此,本文占光应山能量方法得出舰船的丛木构们——矩形板——在水下爆炸作用卜的变形JI’;算公式,该公式可作为其它数值分忻方法计算结果合理性的参考值。还将ADAA方法与结构非线性有限元分析程序ADINA相结合,开发了用增量方法分析非接触水下爆炸作用下舰船结构弹塑性响应的计算程序,该程序的计算结果与试验结果进行了对比,具有良好的精度。可用于对仟何形状的舰艇结构进行水下爆炸弹塑性动响应分忻。必 舰船的所有使命仟务都要靠设备系统执行,一旦关键的设备系统遭到严重破坏,其战斗力将完全丧失。研究舰船设备的抗冲击问题旨光要砒定其所受到的冲击载荷,川]设备的川’击环境。本文介绍了冲山环境的冲人谱拙述方法,进一步介绍了结构动响应向设计冲击谱换算的方5去和原则。应川厂发的舰船动响应分析方法,分别对水而船、玻璃钢船和潜艇的水下爆炸动响应和冲击环境进行了分析计算,分析了影响舰船冲击环境和强度的卞要因素,并探索了一条实船冲击环境预报的计算模拟方法。经与试验结果比较,证明本文所发展的分析方法具有足够的精度,可川于在研舰艇的抗冲击设计和在役舰船的抗冲击改造设计,为舰船抗冲击设计提供了叶靠的分析工具。勺 基于设备的冲击环境,可对设备进行抗冲击设计。设备的执冲击设计计算方法有频域和时域两种。本文旨先对两种方法的适用对象进行了分析。在观有设备抗冲击设计一维频域计算方法的基础卜,推导了设备的三维有限元模型在单方向冲击载荷作用卜的***M计算方法,导出了在非冲击方向」二耦合响应的参与囚十和模态质量i!了了方法,给山了史几整实川的设备频域打洲。山v算八沾。恨批残们应合成川上〔山差斤,对少贞域人法的模态结果合成精度进订了分析比较,得出了频域抗冲击设计分析适用的条个卜。应川频域力忙;分忻厂某艇椎进山机的h!叫3强度。同时,简述厂设备时域抗川。上设计i;光厂沾及应用技术,并取圆轴为支承件的一类型的船川设备抗冲击的薄弱环节为例,介绍了轴与支承环之间的“按触副”冲击问隙效应的模拟方沦。应用该方法进行了某型号仟务的