基于脉冲耦合神经网络的MRI图像分割算法研究

来源 :东北师范大学 | 被引量 : 1次 | 上传用户:xsw2233
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
医生在诊断过程中往往需要医学图像的辅助,准确的医学分割图像对医生诊断病情、制定一些疾病的治疗方案具有重要意义。核磁共振成像是目前应用最为广泛的脑部成像手段之一,但其特殊的传输方式会导致图像受到混合噪声的干扰,且由于图像自身对比度低,内部组织形状不定,分离病灶部位与正常组织变得更加困难。为了设计一种满足临床医学实际需求的MRI脑部图像自动分割算法,本文利用哈佛大学医学院图像库中的MRI图像,从去噪和分割两个方面对获取图像进行了深入的研究处理,取得了较好的效果。本文工作总结如下:首先,为了去除噪声干扰,使用改进小波变换算法对MRI脑部图像进行去噪。在低频部分,根据小波系数分布情况设置阈值对小波信号进行信噪分离,并对非目标区域的小波系数进行弱化滤波处理。在高频部分,通过自适应阈值函数对系数进行处理。实验结果表明,与医学图像中常用的去噪算法相比,改进去噪算法取得了更优的视觉效果和去噪效果评价参数。然后,为确保分割的效果与实时性,本文采用PCNN模型对MRI脑部图像进行分割,并使用改进GSO算法进行参数寻优。改进GSO算法引入了自适应步长的概念,使个体萤火虫的步长可以随着迭代次数自动调整。同时,算法标记了种群最优值,并对每次迭代过程中的萤火虫进行了分类,根据萤火虫所属类型将个体移动方式设置为三种。最后,为了使改进GSO算法可以成功的应用于MRI脑部图像中,本文在萤火虫迭代过程中,设定了合适的适应度函数规范萤火虫的移动。在对MRI脑部图像进行特征分析之后,本文列出了图像中常用的评价指标参数。为了消除因单一指标导致图像分割不准确的现象,通过对比实验,将两项指标的加权和确定为最终的适应度函数。完成萤火虫算法与适应度函数的改进后,对去噪后的MRI图像进行了分割实验。通过对群智能算法专用测试函数进行的寻优实验结果证明,改进GSO算法在寻优性与收敛性上均优于其他用于对比的群智能算法,具有不易陷入局部最优解的优势。与MRI图像中其他常用的分割方法相比,本文提出的改进算法在保留图像内部边缘特征的同时,有效地减少了过分割现象的出现,取得了较好的分割效果。
其他文献
光学字符识别(Optical Character Recognition,OCR)技术始于上个世纪六十年代中期。深度神经网络出现后,识别对象由印刷体字符发展为自然场景字符,目前基于深度学习的OCR已经成为机器视觉领域中的一个重要研究课题。随着中国制造2025的提出,推动我国的工业面向信息化发展,字符识别技术在工业环境中的应用受到了广泛关注。区别于高分辨率、高清晰度的文档字符图像,复杂的工业环境中字
物联网(Internet of things,IoT)的应用开发前景越发广阔,大量的智能环境可以连接到脑机接口(Brain Computer Interface,BCI)系统上。BCI系统是一种连接人类大脑与外部设备的实时通信系统,直接将大脑产生的信息转换成驱动外部设备的命令,取代人体或言语器官与外部世界进行通信。简而言之,BCI系统可以代替人体大脑周围神经和肌肉组织,实现人与外界环境的沟通。BC
本文研究内容是多维背包问题,多维背包问题的目标是在满足所有维度下的限制条件找出被选择的物品总价值最大的组合,它是NP难的组合优化问题,在计算上具有挑战性并且在生活中应用广泛,多维背包问题广泛存在于货物装载、削减库存、项目选择、资金预算、解决处理器和数据库在分布式计算机系统上的分配问题等方面。因此,求解多维背包问题具有重要的理论指导意义和实际应用价值。本文提出随机采样预处理的方法来求解多维背包问题,
在实际生活和工程实践中,多个待优化目标经常同时出现,大量此类问题采用进化算法来求解,因此多目标进化算法的研究有着重要的理论意义和实践意义,也成为了近些年研究的热点。然而在解决具有较小或非连续可行域的问题中,大多数算法由于不可行域的阻碍无法收敛到Pareto前沿。同时,固定的变异参数使得优秀解和劣质解具有相同的变异概率,无法满足算法在进化过程中对保存优秀解,尽可能地改善劣质解以提高算法收敛性与多样性
卷积神经网络已被广泛应用于自然语言处理领域。句子情感分类是自然语言处理领域中最常见的任务之一。国内外学者在句子情感分类任务中,利用深度学习神经网络进行了大量的实验,证明其能够更有效地获取文本数据中的上下文信息。目前,应用于处理句子情感分类任务的神经网络模型通常包括卷积神经网络、递归神经网络和循环神经网络。随着深度学习的发展,神经网络与注意力结合的架构方式为句子情感分类任务的发展带来了重大的突破,预
光学字符识别(Optical Character Recognition,OCR)作为计算机视觉领域中的重要分支,在自然场景与特定场景中都具有广泛的应用空间与研究价值。传统的字符识别方法在对于文档等简单背景的字符识别任务中已经取得了较大的成功,但对于较为复杂的特定场景中的符识别难免捉襟见肘。近年来随着卷积神经网络研究的不断深入,因其能轻易地提取数据间深层的特征关系,极大地提高了对于图像数据的处理效
语言作为人际交流的必要途径,除了具有传递信息的功能之外,还有表达情绪的动能。同样的话语在不同的情感背景下往往表达不同的意义,全球语言皆是如此。因此语音情感识别具有重要的研究价值。在人工智能情感计算领域,语音信号是最基本、最重要的模态之一。国内外众多学者针对语音情感的研究大多分为语音信号直接处理识别以及转换为谱图进行处理识别。而且语音情感识别任务,可以引申出的多个应用领域,比如:智能助老机器人,办公
深度学习近年来被广泛应用在字符识别、图像识别、语音识别及其他领域中,而且都取得了显著的成效。而卷积神经网络作为深度学习里重要的一个算法,因其良好的特征表现能力而备受关注。字符识别因实际需求,也变得越来越热门,更多的人开始进行字符识别方法的研究,如车牌字符识别、芯片字符识别、身份证号字符识别、自然场景文本识别等。货运列车作为我国运输业中经常使用的运输方式,其自动化管理必将越来越受到重视。而货运列车字
随着智能移动终端的普及,移动终端学习的互动学习体验更加便利,智能移动终端与教育教学的有机结合逐渐成为新时代的主流学习方式。移动终端学习环境打破了传统课堂的界限,学习者可以不受时间地点的限制合理使用移动终端进行学习,解决了课前课后一体化问题。由于2020年新冠肺炎疫情的严重影响,导致大量学习者不能进行正常线下课程,所以通过移动终端进行线上学习变得越来越重要。通过移动终端进行学习广泛应用于学习者的日常
近年来,随着计算能力的快速提升,数值模拟在科学研究与工程设计中发挥着越来越重要的作用,但是由于在数值模拟中不可避免的有近似、简化和人为因素,因此数值模拟结果的可信度成为人们越来越关心的问题。不确定性度量化(Uncertainty Quantification,UQ)是近年来计算数学新兴的研究方向,其作用是定量表征模拟结果反映复杂过程的程度。由于很多问题数值模拟计算量大耗时长,难以开展大样本的计算,