论文部分内容阅读
往复压缩机是制造业中常用的过程装备之一,作为压缩并输送工艺介质的关键设备,在航空、航天、化工、石油等众多关键领域都扮演着重要的角色。其周期性和间歇性的工作模式使其附属管线中不可避免的存在气流脉动。大量现场实践和实验研究证实,压缩机管道振动大多数是由气流脉动引起的,会极大地威胁装置的安全运行。在对气流脉动较大的往复压缩机及其管线系统进行减振改造的过程中,添加孔板是一种比较常用的现场方案。通过结构优化提高孔板的脉动抑制水平,可以更有效的进行管道减振。本文针对孔板的结构优化进行了一系列研究。本文首先讨论了往复压缩机气流脉动产生、传递并激发管道振动的机理,以及添加孔板消减气流脉动的原理。然后基于气流通过孔板形成涡旋,从而耗散脉动气团的能量以削减脉动压力的构想,提出了对单孔孔板进行改进后的多孔脉动稳流器结构。并且利用计算流体力学软件CFD(全称Computational Fluid Dynamics)对该结构的等效孔径比、外圈斜孔中心距、外圈斜孔面积比以及外圈孔倾斜角度等参数对脉动抑制效果的影响及其影响机理做了仿真研究,得到了多孔脉动稳流器的最优参数。基于孔板越靠近缓冲罐,则越接近孔板作用的理想状态且气流脉动抑制效果越好这一原理,提出了一种对单孔孔板进行改进的新型脉动衰减器,该结构的开孔直接探入到缓冲罐中,使脉动气团可以直接进入缓冲罐中,从而更大程度的缓解脉动冲击力。并且通过一系列的模拟仿真,得出该结构下环向开孔对于气流脉动可以起到积极有效的促进效果。将改进后的新型脉动衰减器应用于某具体的往复压缩机组管道减振案例中,气流脉动抑制效果显著。在理论及仿真分析的基础上,对某炼油厂工程实例中振动超标的往复式压缩机及管线进行应力分析、振动信号分析和气流脉动分析,并提出整改措施,取得了较好的减振效果。