论文部分内容阅读
社会经济飞速发展,能源却逐渐衰竭。为促进经济可持续发展,推进节能减排政策,提倡开发新能源和可再生能源等方针势在必行。由于利用了太阳能和浅层地热能这两种储量丰富且易于收集的清洁可再生能源,太阳能-土壤源(Solar Assisted Ground-source,简称SAGS)热泵系统在节能环保方面具有其它供冷热系统无法比拟的优势。太阳能保证率体现了系统太阳能热利用程度,是太阳能-土壤源热泵系统重要的设计参数。受地理、气候、负荷特性等因素影响,太阳能保证率最佳值涉及问题复杂,研究难度大,目前国内外对该问题的研究相对不足。鉴于此,本研究采用实验研究和模拟分析相结合的方法,从不同角度分析了系统太阳能保证率选取问题,并综合给出最佳太阳能保证率选取的相关建议。首先,本文以大连理工大学土壤源热泵系统为基础,设计并建立了太阳能-土壤源热泵实验系统,该系统具有夏季供冷、冬季供热、过渡季蓄热三种运行模式,用以满足此类系统实验研究。其次,本文以TRNSYS软件为平台,建立了对应于实验系统的数学仿真模型,用以进一步的系统分析。利用建成后的系统进行了三组实验研究,确保基于TRNSYS软件所建数学模型的正确性。分析结果表明,本研究所建数学模型较为准确,可满足更深入、更全面的系统研究。最后,利用经过验证的数学模型分析系统太阳能保证率问题。以大连地区办公建筑为例,结合《公共建筑节能(65%)设计标准》(辽宁省地方标准)DB21/T1899-2011,本文具体分析了系统最佳太阳能保证率选取方法。利用DeST软件分析建筑全年逐时负荷,并用TRNSYS软件深入分析系统性能。选用集热器面积、水箱容积、跨季节蓄热启动温度、地埋管深度、地埋管数量5个因素,运用正交试验原理,分析系统太阳能保证率敏感性,并从运行能耗、土壤温度平衡、系统经济性等角度给出相关建议。结合对不同地区、不同类型建筑、不同节能率建筑的分析,综合给出关于太阳能保证率选取方面的合理建议。研究结果表明,集热器面积是系统供暖季太阳能保证率的高度显著性影响因素,设计集热器面积应最大程度地满足系统经济性高、土壤温度基本实现平衡、运行能耗低,此时的太阳能保证率为系统最佳太阳能保证率,且其与所在地太阳能资源状况以及建筑体形系数、负荷特性、节能率等因素相关。