基于蓝牙5.0 Beacon的室内定位技术研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:bill119
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近几年,蓝牙技术的飞速发展催生了各种物联网应用的落地,其中基于蓝牙的室内定位技术以设备的体积小、易实现、普适性高等特点越来越受到广泛的关注。蓝牙室内定位技术大多通过测量接收信号强度指示(received signal strength indicator,RSSI)进行测距定位,但是RSSI的不稳定性等问题会影响定位的精度。本论文立足于基于蓝牙的RSSI测距定位技术,结合蓝牙最新发展趋势,设计并实现了基于蓝牙5.0 Beacon的室内定位系统。在测量RSSI阶段,论文提出了一种加权KGMM混合滤波算法,有效地平滑了数据。在测距阶段,论文提出了一种基于深度多隐藏层神经网络的测距模型,有效地降低了测距的误差。在定位阶段,论文改进了传统的三点定位算法,提出了一种基于引导聚集和k最近邻(Bootstrap aggregating-k-Nearest Neighbor,Bagging-k NN)的n点定位算法,显著地提高了室内环境下的定位精度。论文的主要工作如下:(1)简单介绍了低功耗蓝牙5.0与蓝牙Beacon技术原理,并讨论了常用的信号衰减模型,在此基础上对现有的蓝牙室内定位技术进行了详细地对比介绍。(2)改进了测量RSSI阶段的滤波算法与测距阶段的测距模型,提出了基于RSSI的融合加权混合滤波和神经网络的测距方法。首先针对RSSI采样值波动和不稳定等问题对数据进行各种滤波处理并进行对比实验,提出了一种改进的KGMM混合滤波算法。接着引入了机器学习算法中的深度多隐藏层神经网络来构建RSSI和锚节点到信号接收器距离的非线性映射关系。实验结果表明,该测距方法能够有效地降低室内测距误差。(3)针对定位阶段的定位算法,提出了基于Bagging-k NN的n点定位算法。首先研究了传统的三点定位算法,并针对该算法的不足进行了优化,提出了基于距离加权k最近邻(k-Nearest Neighbor,k NN)的n点定位算法并进行实验分析。然后提出了基于Bagging-k NN的n点定位算法,将机器学习算法中的引导聚集(Bootstrap aggregating,Bagging)算法与k NN分类算法相结合,以提升定位的精度。实验结果表明,该算法定位的平均定位误差约为7.35cm,具有较高的稳定性和精确性。(4)搭建了基于Beacon技术的室内定位系统,验证了提出的混合滤波算法、测距方法与定位算法在实际生产环境中落地的可行性。系统包括基于蓝牙5.0射频芯片的蓝牙Beacon锚节点、IOS系统的移动客户端和上位机。Beacon锚节点利用Code Composer Studio(CCS)集成开发环境实现了Beacon广播的功能;移动客户端利用Xcode开发了IOS客户端APP,实现了检测蓝牙信号、RSSI信号的实时采集和处理等功能;上位机主要完成了对数据的滤波处理、测距以及定位算法模块的实现。该系统可以提供较为准确的定位功能并将定位结果展示出来,能够满足大多数室内定位场景的需求。
其他文献
实时延迟线电路在电子通信系统当中有着广泛的应用,其主要功能是为信号提供一定时长的延时,以满足信号在时域或相位等方面的要求。伴随着半导体加工技术的进步,模拟有源结构的实时延迟线电路具有芯片面积小、易集成、结构简单等优点,受到了人们的广泛关注。在相控阵雷达的波束形成应用当中,由于模拟实时延迟线电路在带宽、延时精度等方面有着显著优势,用其替代传统相控阵雷达波束形成阵列中的移相器,可以有效地避免“孔径效应
随着无线通信技术的高速发展和数据流量的不断提升,对锁相环的性能提出了更高的要求,因此近年来诸如SSPLL、ADPLL、BBPLL、SPLL等新型的高性能锁相环成为了人们研究的热点,而将DTC应用于新型锁相环使得这些锁相环展现出更优的性能。本文将对基于DTC的小数型SPLL的关键技术展开研究,其中重点研究可编程整数分频器和DTC控制与校准模块。本文首先介绍了小数型SPLL的基本原理,详细分析了各个主
新型人工电磁材料拥有传统自然材料难以实现的奇异电磁属性,其结构由亚波长尺寸的电磁谐振单元按照某种方式排列而成。利用仿真工具合理地对亚波长单元的结构及其尺寸等进行设计,可以有效地控制其在一定频段内的等效电磁参数,进而有效调控电磁波的特性与传播状态。目前,新型人工电磁材料在诸多领域吸引了研究工作者的广泛关注,并被赋予极大的工程应用价值。基于人工电磁超表面的奇特电磁特性,本文对传统的漏波天线以及反射阵天
W波段毫米波雷达具备小型化较好,分辨率高,全天候工作等特点,广泛地应用于生命体征探测、安防监控、智能交通,特别是车载防撞雷达等领域。为了实现更好的性能,W波段毫米波雷达射频前端与器件一直是研究热点与难点。本文针对W波段毫米波雷达射频前端和器件展开研究,主要内容包括:研制了W波段毫米波三发四收射频前端系统,利用单片集成雷达芯片MSTR001作为核心,针对频率源电路、中频电路、微带天线阵、射频过孔以及
相控阵天线技术广泛应用于雷达、通信、侦收等领域,其显著特点是通过控制馈源相位改变波束指向。传统相控阵天线工作带宽窄,难以满足未来应用需求。约束相控阵天线工作带宽的关键要素之一即是天线单元的工作带宽,并且天线还需要兼顾机载等特殊应用平台低剖面的需求。因此本文针对宽带低剖面天线理论与应用展开深入研究,主要工作如下:1)设计了L型探针馈电天线单元:详细分析了单馈、双馈等L型探针馈电天线的性能,提出了介质
基站端配置大量天线的大规模MIMO技术是第五代移动通信(5G)的重要技术。本论文以大规模MIMO通信系统为背景,以提高系统效能为目的,对相关技术进行了研究。针对大规模MIMO系统中的近场效应问题,本文采用多端口网络技术对此进行研究,重点分析了近场条件下大规模MIMO系统解耦匹配网络(DMNs)的联合设计。此外,波束赋形技术是无线通信中重要的信号处理技术,能显著提高系统频谱效率,由于大规模MIMO系
随着物联网(Internet of Things,Io T)技术的发展,越来越多的移动设备被接入互联网,但是移动设备存在着计算资源和电池容量有限的问题,无法处理计算量过大的任务。作为移动边缘计算(Mobile Edge Computing,MEC)的进一步扩展,雾计算网络(Fog Computing Network,FCN)将雾节点部署在网络的边缘位置来提供额外的计算和存储能力。这样移动终端可以选
近年来,大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统因其在传输可靠性、系统容量和频谱效率等方面的优势,成为第五代移动通信(5th Generation Wireless Systems,5G)系统的关键技术之一。然而,大规模MIMO系统仍存在着射频开销大,信道估计困难,检测算法复杂度高等问题。空间调制(Spatial Modulation,SM)
伴随着移动互联网和物联网的高速发展,移动通信技术的发展也在快速的更新。随着5G移动通信系统的正式商用,多输入多输出(MIMO,Multiple-Input Multiple-Output)技术是在保证功率效率的前提下,大幅提高频谱效率的关键技术。大规模分布式MIMO通过协作利用宏分集进一步提高传输性能,成为MIMO技术的热点问题。具体地,本文主要研究了:第一章首先介绍论文的研究背景。然后分别介绍了
5G系统将支持多种垂直行业应用场景,以及各类具有差异化服务质量需求的业务,其中,海量机器类型通信(m MTC)作为5G三大应用场景之一,是机器类型通信的新型行业应用,致力于保障大量互联设备的数据传输,以实现万物互联的愿景。5G系统需要满足远高于4G的性能要求,以支持爆炸性增长的数据流量、海量连接设备等。同时,丰富的业务类型和高流量密度、高设备连接密度也为网络负载的管理带来挑战。本文主要围绕业务流量