论文部分内容阅读
生物分子马达在生物体内可利用ATP的水解释放的能量进行旋转、滑动等机械运动。鉴于这些生物马达的重要功能,科学工作者致力于实验上合成、制备能够执行特殊任务的人工微纳米马达。近几年来,制备的各种形状的马达能够从环境中汲取能量,产生所需的驱动力进行运动。纳米马达对所处环境的“营养物”梯度的趋化现象,是对纳米马达运动控制研究的一个有科学意义和潜在应用前景的研究课题。对马达趋化性质的研究方法主要有实验室合成和计算机模拟两种途径。计算机模拟具有不受高要求的实验仪器和实验条件的限制的优势,是一种既节约成本又高效的研究方法。更重要的是,它能探索试验中难以观测的物理量,更方便的计算各物理量之间的关联,从而得出一般的理论规律。多粒子碰撞动力学(7)MPC(8)是一种介观模拟方法,将它用于马达的数值模拟能够帮助我们更好的研究马达动力学现象。MPC方法将溶液看作是大量的粒子组成,对这些粒子进行粗粒化简化。相较与其它介观模拟方法,MPC适用于如下一些情况:(1)热涨落和流体动力学有重要影响的情况;(2)雷诺数和Peclet数在0.1-10量级的体系;(3)对输运系数具有严格的解析解情况;(4)当其中构成关联不清楚的复杂体系。由此我们采用MPC方法来构建模型研究马达运动性质。以化学能驱动的纳米马达具有很好的输运和自组装能力。本文使用多粒子碰撞动力学方法建立了介观模拟模型,对由催化球和非催化球构成的二聚物分子马达在一个具有梯度的燃料溶液中的趋化性质展开了研究。首先对趋化过程中马达的运动路径、趋化特征进行了描述,对运动方式和翻转情况进行了研究,给出了趋化机理;然后对影响趋化速度的物理因素进行了讨论,并且给出了量化关系;最后对二聚物纳米马达几何结构对趋化动力学的影响进行了探索。这些结果的取得有利于设计和制备能够探测周围环境的高敏感的微/纳马达。