论文部分内容阅读
大蒜作为营养繁殖蔬菜,其传统的种质保存方式存在诸多弊端。超低温保存技术是一项具有广阔应用前景的植物种质离体保存技术,已在一些国家主要大蒜基因型和品种保存中应用。然而由于该项技术具有极显著的基因型特异性,相关研究在我国起步较晚,现有资料少且不成体系,从而极大地制约了该技术在我国大蒜种质保存中的应用。此外,目前国内外研究所采用的大蒜茎尖均取材于田间环境,使外植体易受到病原污染而导致超低温保存失败,同时由于田间大蒜的品种特性、种植季节和栽培方式影响,极大地限制了茎尖外植体的足量稳定供应,因此茎尖取材成为大蒜超低温保存研究与应用所共同面临的一个主要问题。超低温技术除能长时间且稳定地保存植物种质外,还兼具脱除植物组织内病原体的作用,即超低温疗法。目前该疗法已在很多园艺植物上应用,然而将超低温疗法应用于大蒜病毒脱除方面的研究资料较少。此外,超低温保存作为一项植物种质离体保存技术,对经其处理冷冻后再生植株的遗传稳定性及田间生长适应性等方面进行评价是十分必要的,而此类研究在大蒜作物上鲜有报道。本研究通过离体诱导大蒜不定芽为其超低温保存提供茎尖取材的新途径,同时建立了适合中国大蒜品种的超低温保存体系;对比了超低温疗法与传统方法的脱毒效果;采用分子标记、流式细胞技术及植株田间生长评价,多角度地对超低温保存再生大蒜的遗传稳定性进行了验证。本研究获得如下主要结果:1.以大蒜茎盘为外植体,通过优化植物生长激素浓度,建立了适用于10个中国大蒜品种的不定芽再生体系。获得不定芽平均增殖系数达18.6,可为大蒜超低温保存研究提供数量充足,生理状态及发育程度一致的无菌材料。采用简单序列重复(Simple sequence repeat,SSR)检测再生植株,未发现变异条带。2.利用离体诱导产生的不定芽茎尖作为材料,通过筛选关键参数建立了如下大蒜超低温保存体系:从大蒜离体不定芽(培养5-7周,假茎粗2-3 mm)中剥取茎尖(长度约2 mm,包含2-4个叶原基和基部短缩茎组织)于室温24℃,在MS+6.5 g/L琼脂+0.3 mol/L蔗糖的固体培养基上预培养2 d后,在MS+2 mol/L甘油+0.6 mol/L蔗糖加载液中室温培养20 min,采用玻璃化液PVS3在0℃条件下,对茎尖保护性脱水1.5 h,随后将内含茎尖的PVS3液滴滴在铝箔条上,将铝箔条装入冷冻管并迅速浸入液氮冷冻1 h,直接将载有冷冻茎尖的铝箔条于室温下浸入卸载液MS液体培养基+1.2 mol/L蔗糖进行快速解冻,10 min后换新鲜卸载液继续卸载,将解冻后的茎尖接种于恢复培养基MS+6.5 g/L琼脂+30 g/L蔗糖进行再生。以10个中国大蒜品种验证了该体系的广谱性,获得平均存活率和再生率分别为56.1%和48.3%,同时发现该体系并不适用于供试早熟大蒜品种的超低温保存。研究以未熟花序离体诱导的不定芽为试材,证明了两种茎尖来源对大蒜超低温保存效果无影响,为大蒜超低温保存提供了新的离体茎尖来源。组织学切片观察表明经超低温冷冻后的大蒜茎尖,其茎端分生组织及包裹在外的第1-4个幼嫩叶原基中的大部分细胞可以存活,而靠近茎端基部及外围叶片的细胞则在冷冻过程中死亡。SSR和流式细胞分析结果表明超低温再生大蒜植株既未出现变异条带,也没有发生染色体倍性变异。3.采用酶联免疫吸附测定法(DAS-ELISA)和反转录-聚合酶链式反应法(RT-PCR)检测,发现田间生长的大蒜(G064)普遍受到洋葱黄矮病毒(OYDV)、韭葱黄条斑病毒(LYSV)、大蒜潜隐病毒(GLV)和大蒜系列病毒(GarVs)的复合侵染。对比超低温疗法和大蒜传统脱毒方法对上述病毒的脱除效率,超低温疗法对OYDV的脱除率最高达76.4%,且试管苗再生率(65.0%)显著高于传统脱毒方法。4.通过设置防虫设施的盆栽试验,从大蒜植株形态指标、光合特性、生育期、花芽鳞芽分化及鳞茎特性方面对比了超低温再生大蒜、离体再生大蒜及田间大蒜的生长情况。发现超低温再生大蒜在植株生长、叶片光合能力及鳞茎特性上均具有显著优势,同时结合盆栽大蒜的病毒检测结果认为这些优势与超低温疗法的脱毒效应密切相关。对比田间和离体来源大蒜的各项指标,证明了大蒜离体再生植株在形态、光合生理层面的相对稳定性。总体而言,经超低温保存后的大蒜再生植株能够良好地适应其原生环境。本研究为我国大蒜超低温种质库的建立提供了相关资料和技术支持,同时也为该项技术在大蒜作物上的发展与应用提供了依据。