基于深度学习的驾驶状态和意图的决策分析

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:sdcwsjy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
无人驾驶系统是一个非常庞大,复杂的各种高级模块组成的综合性系统,在满足基本驾驶功能的同时,更重要的是作为智能系统,需要和人类进行交互,分析人类的驾驶意图,将人类意图结合到驾驶策略中。同时,为了能够更加安全的确保驾驶过程的安全以及驾驶意图的正确执行,智能驾驶系统需要能够感知并分析驾驶员/乘客的状态,从而确保命令的正确下达与驾驶过程的相对安全,因此本文从两方面出发建立基于深度学习的驾驶决策分析系统,一方面基于驾驶员外部的状态检测数据,另一方面基于驾驶员自身的意图信息,结合这两方面构建可信的驾驶意图分析系统:1.基于驾驶员外部数据的决策分析方法(a)基于深度学习的轻量级驾驶状态分析系统,该系统可以实时的分析驾驶员在驾驶舱中的状态与疲劳度,并在非正常状态发生时及时的给出报警,避免不愉快事件的发生。本文基于深度学习技术,开发了基于MobileNet的驾驶状态分类算法,并且提出了加权池化方法用于提升整体分类精度,实时捕捉并分析驾驶员的当前状态确保驾驶员处于一个安全可信的状态之下。(b)本文详细的调研并分析了当前国内外比较实用的一些基于视觉的疲劳监测算法,该部分主要作为驾驶状态分析系统的补充部分。在能保证精度以及实用性的情况下,基于计算机视觉技术集合特征工程对人脸部位的关键点进行提取,随后利用人脸部位的关键点信息整理出一套可靠的算法用于定义疲劳状态,并且设计了详细的实验过程证明方法的实用性。2.基于驾驶员自身的意图决策分析该系统基于深度学习知识体系,结合计算机视觉技术以及自然语言处理技术,构建多模态信息融合的场景理解模型,该系统会基于人类下达的指令在场景中找出相对的目标。为实现高精度且高效的驾驶意图分析与理解算法,本文提出了针对不同模态特征的提取器以及不同模态下的注意力机制,结合基于深度学习的语音识别技术以及目标检测技术构建起了整个分析与理解系统。基于驾驶员主动的交互诉求,进行驾驶意图分析指导无人驾驶,让无人驾驶更便利更智能与实用。本文设计两大核心内容都是为了面向未来的无人驾驶所服务的,基于意图分析达成人-机-环境三方交互,让人们可以介入无人驾驶过程,从而信赖无人驾驶,解决无人驾驶自主达成的目的。并且利用驾驶状态分析系统确保驾驶员处于可信赖状态,可以针对出现的异常情况进行处理,确保整体驾驶过程的安全可靠。因此本文提出的驾驶决策分析系统的实现整合了驾驶员意图分析技术以及驾驶员状态监控技术,从而构建可信可靠可交互的未来无人驾驶技术。
其他文献
自动驾驶可以有效缓解交通安全事故,提高交通运输效率,极大的改善现有交通环境。同时自动驾驶的落地也是国家新基建的重要组成部分,因此相关技术的发展有着重要的现实意义。目前自动驾驶方案大致分为两种,基于规则的方案需要人工设计环境感知算法,并结合高清地图完成车辆定位、路径规划、决策控制等一系列算法完成。整个系统设计复杂、成本高昂,由于各场景之前还存在边界模糊,所以整个系统并不是完全可观。基于端到端的自动驾
呼吸音在肺部疾病的预防和诊断中起着至关重要的作用。针对呼吸音进行听诊是筛查和诊断肺部疾病的主要方式之一。然而传统的听诊需要专业的医生来进行,在医疗资源日益紧缺的社会中,更加需要一种自动诊断系统来帮助人们缓解医疗资源不足的压力。深度神经网络在解决这类问题上具有很大的潜力,然而,训练一个有效果的深度神经网络需要大量的数据作为基础,最大的呼吸数据集ICBHI只有900多条呼吸音音频,这对于训练一个深度神
在经济科技越来越发达的今天,各个国家之间联系变的更加的紧密,海洋运输是国际间进行交流的主要方式之一。伴随着航运业的发展,海上交通事故时有发生。因此,对于船舶航行轨迹的研究变的愈发重要,通过轨迹研究,可以对船舶所处的航线进行分析,对船舶的航行状态、目的地等进行监控,及时的发现船舶出现的异常轨迹,保障海上交通的安全。本文基于自动识别系统(Automatic Identification System,
近年来基于卷积神经网络的机器学习技术在社会生产发展与人们日常生活得到了越来越广泛的应用,在图像分类、目标检测、语音识别、自然语言处理等任务上发展尤为突出。不幸的是,神经网络对很容易受到对抗样本的攻击。对抗样本是一种通过在干净的原始数据上添加专门设计的的微小噪声,使神经网络模型做出错误判断的人造样本。对抗样本的存在对人工智能安全造成了极大的威胁。神经网络模型技术在安全敏感领域(如自动驾驶)的落地无法
在当代,医学成像主要依赖高科技成像设备,医生主要通过医学图像,对病人进行疾病的诊断。因此对医学图像进行超分辨率重建,提升医学图像的分辨率具有重要的现实意义。本文聚焦于医学图像领域,应用深度学习的技术,对医学CT图像进行超分辨率重建,旨在提高CT医疗图像的重建像素质量,辅助医生进行病变目标的检测,减少漏诊和误诊的概率。医学影像受困于成像原理,成像设备,以及病人安全等硬件条件的限制,图像分辨率往往不如
随着移动互联网的快速发展,导航系统被广泛地应用于日常生活之中。现有的导航应用程序大部分提供的是逐步导航技术,其主要来自基础道路的网络拓扑信息,因此逐步导航被认为是将物理世界中的度量简化为简单口语描述的工具(例如距离、时间、转向等信息)。这种导航描述方式忽略了人们对地理空间的固有认知,对于那些了解城市布局的司机来说,往往是冗长和复杂的。这样不仅使得驾驶员对导航描述更为模糊,还占用了大量的终端资源。而
图像语义分割作为计算机视觉领域的一个像素粒度核心研究问题,其目标是为输入图像的每一个像素预测一个预先定义的语义类别。图像语义分割作为当前诸多领域的关注重点,对医疗诊断、机器人感知、自动驾驶、视频监控、增强现实等真实应用领域的发展可以提供强有力的支持。当前的图像语义分割模型要想获得足够的分割精度需要大量带像素级标注的样本进行模型的训练。然而由于像素级标注的获取需要耗费大量的人力成本,这导致所需样本不
图像分类识别已经成为了人工智能领域一个重要的组成部分,是人们当下研究的热点话题。卷积神经网络是图像分类识别中的一项关键技术,被大规模应用于GPU、CPU等多种不同平台上。为了满足不同的部署需求,尤其是在嵌入式移动端中,需要综合考虑功耗体积等因素,CPU或GPU便无法胜任这样的工作。而FPGA凭借着高性能、低功耗的特点,成为了卷积神经网络硬件加速的一个重要选择。本文基于FPGA实现了一个卷积神经网络
随着人工智能的蓬勃发展,深度神经网络在图像分类,自动驾驶,场景监控,医疗健康等领域都得到了广泛的应用。在深度神经网络取得巨大成功的同时,其安全性问题也越来越受人关注,当前大量研究表明神经网络易受对抗样本攻击,以图像识别为例,通过在原始图像上添加一些人眼不可识别的微小扰动就能让模型无法正确运作。在人工智能越来越频繁地运用在需要高安全性应用的时代,对抗样本的存在无疑会成为人工智能发展的一大阻碍,因此研
近十余年来,以深度神经网络为主的机器学习技术取得了长足的进步,这得益于高性能计算软硬件和实际应用的不断发展。现如今已有大量组织和企业提供基于机器学习系统向大众提供服务,例如面部、语音识别、照片优化等等。深度神经网络对算力的需求也不同以往,因此对分布式神经网络系统的需求也逐渐增加。另一方面,在边缘计算应用的不断深入,云端、边缘和终端的分层网络日渐成熟,这带来了更丰富的数据来源、计算设备、应用需求和隐