论文部分内容阅读
互联网上的信息除了文本之外,还有大量的图像、图形、视频、音频及动画等,对这些媒体类型的信息进行快速准确地检索已经成为人们的迫切需要,因此基于内容的多媒体检索应运而生。基于内容的医学图像检索是基于内容的图像检索技术在医学领域中的应用,在临床、教学、科研以及医学图像归档和通信系统(PACS)中都有着重要的作用。在目前基于内容的图像检索技术还不成熟的情况下,如何将图像检索与医学图像有机地结合,为医师提供便捷准确地检索图像的手段,并为其诊断提供辅助的建议,是本文的主要研究目标。 本文在系统地分析基于内容的图像检索关键技术及发展趋势基础上,对医学图像语义特征提取方法、图像内容和文本信息的结合、综合特征图像检索中权重的优化、医学图像检索与计算机辅助诊断的关系等基于内容的医学图像检索面临的关键问题进行了系统、深入和较为全面的研究,主要包括: (1) 底层特征和语义特征相结合的医学图像描述方法 在通用的基于内容的图像检索框架基础之上,结合医学图像的特点,给出了基于内容的医学图像检索框架,描述了各模块的功能。从该框架中可知图像的分析描述模块是图像检索的关键步骤之一。目前图像的描述主要是基于颜色、纹理和形状等底层特征的表示方法,与人类对图像的描述存在较大的差异,为此人们提出了采用语义特征描述图像。目前图像语义的获取主要有三种来源,分别是基于知识的语义提取、人工交互语义提取和利用外部信息源的语义生成,将这三条主线应用于医学领域中,提出了层次化的医学图像语义模型,语义内容级别由低到高分别为:概况语义、医生语义和对象语义,下一个层次包含了比上一个层次更高级的语义,而更高层的语义建立在较低层的语义获得的基础上。该模型将医学数字图像通信标准(DICOM)和医生给出的诊断报告应用到了医学图像检索中,这两项内容是与图像息息相关的文本信息,但却是不可缺少的语义内容。在此基