论文部分内容阅读
频率在2-18 GHz范围内的微波由于可在大气环境下远距离传输,因此被通信、雷达探测等领域广泛应用。这为人类活动提供了便利的同时,也带来了很多亟待解决的问题。一方面,5G通信技术的普及为人类带来了更高的微波传输效率,但由于有限的电子器件抗干扰能力,会导致严重的电磁波污染和电磁干涉问题;另一方面,微波雷达已经被各国广泛应用而成为了普遍存在的反隐身技术,现有武器装备如何实现微波隐身以避免雷达探测,也成为了关乎国家安全的重要问题。因此,世界各国的研究人员纷纷致力于研究新型吸波材料,希望对微波实现有效吸收来解决上述问题。但吸波材料的具体应用形式,如吸波贴片或隐身涂层等,均需要材料在实现宽带吸收的前提下尽可能降低厚度,而降低到一定程度后会使材料的厚度远小于工作波长,即达到深亚波长厚度,在这种情况下材料的吸波性能会受到Plank-Rozanov极限的限制,导致很难实现宽带吸收,因此如何在深亚波长厚度下提高吸波性能成为了吸波材料性能突破的关键因素。同时吸波材料的应用环境也要求其实现功能集成化,如多频段及多功能适应性,这也成为了制约吸波材料应用的问题。在此背景下,本文以仿生学设计为突破口,将吸波材料与生物模型结合,借助自然界生物亿万年进化而趋于完美的优势,提取自然界具有电磁波吸收作用的生物模型,将吸波材料制备成仿生基元并进行序构排列,并将仿生基元设计为亚波长尺度,即基元特征尺寸与工作波长相当或更小,这种尺度特征被证明具有很好的电磁波抗反射作用,因此适合借鉴到吸波材料中。本文通过上述设计以突破传统吸波材料的性能局限,使材料在深亚波长厚度下具有宽频吸收性能,并揭示仿生材料实现宽带吸波的微观机理,同时具有多频段及多功能适应性。具体取得的研究成果如下:首先借鉴了蝴蝶翅膀栅形结构,将铁硅合金条带按栅形排列在羰基铁/聚氨酯基体中,调节条带取向及间距实现共振频率动态调谐及增强吸收。在1.25 mm厚度下,可调谐的有效吸收带宽(反射损耗RL ≤-10 dB)可覆盖10.2-18 GHz频率范围,吸收峰值从-38.43 dB增强为-66.90 dB,并通过模拟结果验证了条带和基体的耦合作用。但上述栅形序构在提高吸收带宽方面性能并不明显,为了实现深亚波长厚度下宽带吸收,进一步受蛾眼微结构启发制备了多级蛾眼仿生序构材料。其在1 mm厚度下将有效吸收带宽(RL≤-10 dB)从0提高到8.04-17.88 GHz,因此突破了传统吸波材料的Plank-Rozanov极限;结合代数拓扑中的Poincare-Brouwer定理说明仿生基元存在电流零点可提高吸收性能,并采用仿真结果进行了证明。在证明仿生序构材料具有宽带吸收性能之后,为实现序构材料吸波性能的进一步提高,根据金龟子手性序构材料的旋转极化原理,通过构造基元螺旋排列来增强吸收及拓展带宽。将非本征手性序构设计为右手螺旋(扭转角15°)本征手性后,高频下吸收峰从-26.36 dB增强到-48.83 dB,有效带宽(RL≤-10 dB)从13.14-15.96 GHz扩展到12.96-18 GHz,在轻质(面密度1.45 kg/m2)的情况下,吸收率超过80%的带宽(RL≤-7 dB)覆盖了整个4-18 GHz频率范围。通过相位延迟和仿真模型分析验证了这一机制,并且采用铁基合金制备功能基元,增加了序构材料设计的自由度。最后,为实现2-18 GHz全频段有效吸收,提取红珠凤蝶翅膀表面的多孔结构模型,设计制备了仿生多孔序构吸波材料。相比于未进行仿生的普通吸波材料,使大于90%的有效吸收带宽(RL≤-10 dB)从0拓宽到2-18 GHz全频段吸收,且吸收峰从-8.90 dB增强到-58.49 dB。通过测量材料吸收电磁波的相位延迟及进行电磁仿真,对吸波材料的机理进行了分析。本研究通过将仿生学研究范式引入到吸波材料设计中,实现了深亚波长厚度下的宽带吸收,为完善序构吸波材料理论提供了基础。并且,上述仿生序构材料通过基元排列及基体的材质选择,实现了柔性、抗冲击、耐腐蚀、以及多频段适应性等功能,展示了这种序构形式的应用优势。