【摘 要】
:
厌氧氨氧化在全球氮循环中发挥着重要作用,越来越受到全世界的关注。以海洋厌氧氨氧化菌(MAB)为主体菌种处理高盐含氮废水,可以获得较高的脱氮性能。本研究使用真实海水来配置成合成废水,其盐度为35 g/L,温度保持在室温状态(19±3oC)。基于反应器的稳定运行,研究了在以MAB为主导的厌氧氨氧化过程中对微量元素Zn(Ⅱ)的响应特征。序批式反应器(SBR)中,长期休眠的活性污泥,经过125 d的菌种自
论文部分内容阅读
厌氧氨氧化在全球氮循环中发挥着重要作用,越来越受到全世界的关注。以海洋厌氧氨氧化菌(MAB)为主体菌种处理高盐含氮废水,可以获得较高的脱氮性能。本研究使用真实海水来配置成合成废水,其盐度为35 g/L,温度保持在室温状态(19±3oC)。基于反应器的稳定运行,研究了在以MAB为主导的厌氧氨氧化过程中对微量元素Zn(Ⅱ)的响应特征。序批式反应器(SBR)中,长期休眠的活性污泥,经过125 d的菌种自溶、活性迟滞、活性提高、活性稳定时期后,其氮去除性能基本恢复。氨氮去除速率和亚氮去除速率可以分别达到0.56和0.59 kg/(m3·d),总氮去除速率(TNRR)可以达到1.02 kg/(m3·d)。MAB的相对丰度为9.20%,在高盐含氮废水中可以稳定地发挥其脱氮性能。再次修正后的Logistic模型可以很好地应用于MAB的活性恢复试验中,拟合后得到的滞后时间为82.66 d。研究结果能够为长期处于休眠状态的活性污泥提供一定的指导意义。采用100 m L血清瓶,研究MAB对微量元素Zn(Ⅱ)的短期响应特征。进水NH4+-N和NO2--N含量为100和132 mg/L,HRT设置为6 h。当Zn(Ⅱ)剂量不高于8 mg/L时,对MAB的氮去除可以起到促进作用。当Zn(Ⅱ)剂量高于15 mg/L时,对MAB的氮去除过程有一定的抑制作用,随着剂量的升高,抑制作用增强。在6 h暴露时间内,Zn(Ⅱ)对于MAB在高盐含氮废水中的半抑制浓度为127.41 mg/L。再次修正后的Logistic模型和修正后的Gompertz模型可以适用于不同Zn(Ⅱ)剂量下MAB在高盐含氮废水的脱氮过程中,拟合所得的参数可以很好地预测反应过程中的TNRRmax。采用SBR反应器,研究MAB对微量元素Zn(Ⅱ)的长期响应特征。进水NH4+-N和NO2--N含量为100和132 mg/L,HRT设置为4 h。当Zn(Ⅱ)剂量从0增加到3 mg/L,MAB的TNRR从1.1提高到1.33 kg/(m3·d)。在3 mg/L Zn(Ⅱ)时,MAB的细胞内亚硝酸盐还原酶、硝酸还原酶、肼脱氢酶活性和heme c含量显著增强。在4 mg/L Zn(Ⅱ)的添加下,MAB能够分泌大量胞外聚合物以抵抗过量Zn(Ⅱ)侵袭。添加5 mg/L Zn(Ⅱ)后,TNRR迅速下降至0.22 kg/(m3·d)。MAB始终是反应器内的优势菌种,氮去除的快速崩溃并未导致MAB丰度的下降。总的来说,提供充足的Zn(Ⅱ)是提高高盐含氮废水中MAB活性的关键。
其他文献
近些年来,煤、天然气等不可再生能源的开发与利用使环境污染和资源短缺等问题日益突出,迫切需要开发新型能源来替代化石燃料,因此,核能、地热能等新能源得到较快发展。然而这些能源的应用受到时间、地域等限制条件比较多,而且其存储问题也需要进一步地解决。在目前的能源存储设备里,锂离子电池由于具有能量密度高、使用便捷等优点而被广泛应用在交通工具、电子设备以及大型电网电站等领域。然而便携式电子设备及新能源交通工具
随着科技的进步与电子信息产业的发展,集成电路的技术革新面临新的挑战,这就对相应的电子元器件提出了更高的要求。作为三大无源器件之一的电感器在集成电路中有着广泛的应用,特别是在高频电路和无线通信等领域,比如变压器、振荡器和电源电压转换器等,都使用到电感器件。然而传统的平面螺旋电感由于占用芯片面积较大,高频时性能恶化严重,无法满足器件高频化和集成化的发展趋势,软磁材料由于其具有高饱和磁化强度、低矫顽力、
随着科学技术的快速发展和实验室成果的大量产学研转化,新兴的纳米材料开始越来越多地影响人们的日常生活。静电纺丝技术作为目前大批量生产纳米材料最简单和最高效的手段之一在世界范围内广泛传播,纳米纤维膜作为其终端产物之一具有不同于其他材料的纳米尺度效应和巨大的比表面积和孔隙率,而且在成分和结构方面还具有高度的可设计化,这些优点使静电纺丝纤维膜在生物医疗研究中具有广大的应用前景,特别是在止血、组织工程、药物
随着互联网时代的快速发展,人们对信息处理和信息呈现的要求越来越高。场效应晶体管,作为芯片和显示面板的基础功能元件,因此成为重要的的研究对象。金属氧化物由于其稳定的物化性能和便于合成的技术优势,受到科研界的广泛关注,并应用于诸多领域。将金属氧化物半导体应用于场效应晶体管,相比于传统的非晶硅FET,有利于实现低成本、高迁移率电子器件;将金属氧化物绝缘体应用于FET,与传统的二氧化硅FET相比,在更小的
近年来,挠曲电效应这种由应变梯度引起的电极化,以其在晶体材料中普遍存在的特性,引起了科学界的热切关注。目前,很多实验通过挠曲电极化在半导体、过渡金属氧化物和钙钛矿氧化物中实现了物理性质的力学调制,如电荷分布、电输运和铁电极化等特性,挠曲电效应被应用于传感器和驱动器的同时,在光电领域的研究也取得了突破,因其材料选择的多样性及结构中没有p-n结而不受Shockley-Queisser极限限制等特点而具
近年来,随着新课改的不断发展,初中物理教科书在丰富性和多样性方面取得了显著的进展,也得到了社会的广泛认可。同时,对教材类型和内容的研究也开始频繁地出现在人们的视野中,极大地促进了本国的基础教育的改革。本文选择初中物理教材“浮力”章节为研究对象,以《物理课程与教学论》中的质量评价表(见附录一)及《中学物理教材研究与教学设计》中的教材结构评价指标(见附录二)为依据,确定本文的比较维度,分别对6个版本的
α相氧化铁(α-Fe2O3),作为n型半导体纳米材料,带隙约为2.0-2.2 ev,吸收波长可达600 nm,能有效吸收可见光。它具有化学稳定性好、成本低等优点,同时具有磁性可回收利用、对环境友好,可以应用在光催化领域且应用前景广。然而,由于α-Fe2O3载流子迁移率低,激发态寿命较短,限制了其光催化性能。另外,α-Fe2O3作为一种过渡金属氧化物,一些独特的特点使其可以应用在超级电容器领域。例如
激光诱导击穿光谱技术(Laser induced breakdown spectroscopy,LIBS)是一种利用高能脉冲激光诱导击穿产生等离子体,通过分析等离子体的发射光谱来实现样品中元素成分检测的光谱分析技术。由于LIBS技术本身具备快速、高灵敏、多元素分析等独特优势,因而受到了普遍的重视。LIBS技术在液体样品金属元素检测方面有着深具潜力的优势,但在LIBS技术水体检测应用中,激光脉冲在水
文化是一个国家的灵魂,我国传统文化经历了上下五千年的历史积淀,蕴含着丰富的文化思想、人生哲理等。从党的十八大以来,习近平总书记曾多次提出中国优秀传统文化的重要性,《关于实施中华优秀传统文化传承发展工程的意见》指出:以立德树人为根本任务,在教育的各个环节中合理融入中国传统文化。因此将中国传统文化融入初中物理教学意义重大,不仅可以继承和传承中国传统文化,而且可以使学生更加热爱物理,实现文理学科的相互交
培养学生的核心素养有利于立德树人这一根本任务的有效落实,如何在物理教学中落实核心素养一直是一个热点话题。物理规律教学是物理教学的重要组成部分,但目前许多教师忽略了物理规律的形成过程,导致学生只能机械地记忆规律,不利于发展学生的核心素养。因此,在规律教学中培养学生的物理学科核心素养是十分有必要的。第一部分为引言。主要介绍了课题的研究背景,通过文献综述法深入地了解国内外基于物理学科核心素养的高中物理规