论文部分内容阅读
有机磷农药的使用给环境和人类健康带来了非常大的变化,在杀虫方面,有机磷农药有着独到的优势,反过来,出现的安全问题也越来越多,因此对有机磷农药残留的检测是非常重要的。本研究基于聚磷菌微生物生理特征,设计制备了以甲胺磷为特征的有机磷农药残留测定用微生物传感器。本研究微生物传感器比其他有机磷农药残留检测方法,简单、经济、准确、实时、适用于现场检测。研究内容分为以下三个方面:一、早期研究已知聚磷菌通过好氧吸磷厌氧释磷的过程来去除环境中的无机磷,本研究还发现聚磷菌向周围环境释放有机磷降解包外酶。依此两种聚磷菌的特性,本论文开发了基于聚磷菌生理特性的有机磷农药残留传感器。聚磷菌生长曲线说明,该聚磷菌在22℃,转速为160 r/min的摇床中培养28 h时既能处于稳定期。本研究利用该期聚磷菌进行一系列实验,测得的有关传感器最佳条件如下:在18℃下媒介为pH 7.2、含0.2%乙酸溶液中好氧吸磷60 min;常温下溶解氧3.0 mg/L,厌氧释磷30 min。以上条件下,聚磷菌包外酶可将99.4%的甲胺磷(0.20mg/L)降解(1.6×10-9mg/单个菌)为正磷酸根。传感器的线性检测范围为0.001~0.2mg/L(1×105个聚磷菌/mL,R2=0.990),最低检测限是0.4μg/L,相对标准偏差为0.74%(n=3)。检测池体积缩小到300 μL时,可带来约100多倍灵敏度增强。二、本研究对聚磷菌的胞外酶进行了初步研究。通过凝胶电泳分离得到两种包外酶,其大小分别为15 K(酶Ⅰ)和10 K(酶ⅡI),其中酶Ⅰ的含量较多。定量研究结果表明,当甲胺磷(0.20 mg/L)为诱导物和不含有诱导物时,通过紫外可见分光光度法测得酶的浓度分别为90μg/mL和73μg/mL(1×105个聚磷菌/mL)。将分离出的两种酶分别对甲胺磷进行降解,酶Ⅰ的降解效率略高于酶Ⅱ,其Michaelis-Menten方程为V=6.754 × 10-5(S)/(0.035+(S)),最大反应速率为 Vmax=6.754× 10-5μmol/mL/min。三、本研究为传感器的最终正磷酸根电位输出信号,研究了以1-丁基-3-甲基咪唑六氟磷酸盐([Bmim]PF6)离子液体液膜磷酸根离子选择性电极。该[Bmim]PF6敏感膜电极与Ag |AgC1|[Bmim]Cl参比电极构成的的磷酸根离子选择性电极,线性响应范围为10-5~10-1 mol/L,斜率为-47.3 mV/decade,检测下限为1.0× 10+mol/L,在43℃下,在响应时间为2 min。以[Bmim]PF6离子液体作为指示电极的磷酸根离子选择性电极成功测定环境水及土壤样品中的磷酸根的含量。该磷酸根离子选择性电极具有较强的重现性和稳定性,抗干扰性较强,对水,土壤,大气及生物中磷酸根的测定具有积极意义。