时空锁模多模光纤激光器中孤子动力学研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:xboaty
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超快激光的多模光纤非线性传输过程受到模间色散、自成像效应、随机耦合等因素影响,表现出丰富的动力学特性以及复杂的物理机制,为研究跨学科非线性问题提供了崭新的实验平台。因此,实时观测多模超快激光非线性动力学过程,研究其物理机制,开展跨学科问题类比分析研究,具有重大科学意义。然而,这一目标的实现对实时光学测量技术提出了新的挑战,涉及多维度信息实时获取、多通道信息精确同步、高时频分辨率、长记录时间等难题。针对以上难题,本论文从时空锁模理论模型出发,搭建时空锁模多模光纤激光器,研发实时散斑分辨时间-光谱测量技术,开展时空锁模多模超快激光非线性动力学研究,结合理论模拟剖析其物理机制,主要成果包括:(1)基于广义多模非线性薛定谔方程,建立了时空锁模多模光纤激光器的理论模型并进行三维数值模拟,通过在模型中增加纤芯偏离的空间滤波效应,突破了传统一维模型无法观察三维图景的局限,分析了时空锁模多模光纤激光器中三维孤子数值解的时间、空间、频率特性,探索了时空锁模多模光纤激光器中包括脉动、孤子分子振动、孤子爆炸等动力学过程。(2)研发了由信号空间放大、时分复用散斑信息采集、时间拉伸以及实时采集四部分组成的多散斑时频同步实时观测系统,实现了时间分辨率12.5 ps,光谱分辨率0.02nm,空间分辨率10μm的时间-空间-光谱多维度实时同步观测;搭建了时空锁模多模光纤激光器,在时间-空间-光谱多维度对三维孤子进行了表征,首次发现了散斑时频动力学过程的多样性。基于多散斑时频同步实时观测系统发现了时空锁模在形成、分裂、呼吸、湮灭过程中的动力学行为。利用场相关等数据处理方法进一步分析了三维孤子的时空相互作用。通过拓展多散斑时频同步实时观测系统的空间通道数,对时空锁模多脉冲演化过程进行了更高维度的实时测量及分析。开发了快速模式分解算法,搭建了高维光场横向强度-相位分布实时测量装置,对时空锁模激光进行了实时模式分解,实现了300个模式能量占比分析和模式分解,并开展了三维光场重构。(3)进行了三维孤子分子的数值模拟和实验研究,发现了三维孤子分子时频动力学特征的散斑差异性。实验研究了三维孤子分子时间-光谱动力学的物理特性,结合理论模拟分析了其中瞬态现象的物理机制,如孤子分子与自由孤子之间的相互作用、孤子分子的内在作用、以及孤子分子长期时空演化。数值模拟表明,各模式间脉冲演化差异是引起散斑动力学多样化的原因。通过三维光学类比,提供了一种强有力的跨学科方法,用于解决分子科学中实验上难以直接验证的问题。
其他文献
生物质是指自然界中具有可再生特性的有机类非化石资源,它们储量丰富、来源广泛、理化性质独特且可设计性强,被视为是替代不可再生石化产品制备离子凝胶的理想原料。然而,现阶段生物质在离子凝胶领域的应用仍存在一些难点亟待解决:(1)生物质原料占比较低,石油基原料(如单体、交联剂、引发剂)仍占据主导地位并提供功能优势;(2)聚合步骤冗长、繁琐且涉及外部溶剂,不利于大规模生产;(3)生物质制备离子凝胶大多需要水
学位
电催化水分解被认为是制备清洁氢气能源的一种有前途的方法。由于阴极的析氢反应(HER)和阳极的析氧反应(OER)过程中产生的高过电位,致使电解水制氢的能量转换效率低,极大地阻碍了电解水制氢的发展。目前,虽然商用的贵金属基电催化剂(Pt/C、Ir O2和Ru O2等)表现出优异的催化活性,但由于其高成本、资源储量低等问题,限制了其大规模应用。因此,开发储量丰富、低成本和高效的非贵金属电催化剂对于提高电
学位
随着传统石化资源的不断枯竭和国家环保标准的不断提高,具有可降解和可再生性能的生物质基材料的开发利用越来越受到重视。环糊精金属有机骨架(CD-MOFs)是以生物质材料环糊精为有机配体合成的一种新型金属有机骨架材料,独特的孔隙结构使其对客体分子具有优异的包埋能力,但粉末晶体结构、高脆性和在水中的不稳定性使其在加工成型方面面临巨大的挑战,限制了其应用范围。天然高分子聚合物如纤维素和壳聚糖等具有可降解、可
学位
纳米纤维素是一种可再生型的生物质纳米材料,如何对其进行有效的表界面调控进而在先进功能材料的构筑中充分发挥其优异性能,是生物质纳米材料领域的关键性挑战。纳米综纤维素,作为一种由纳米纤维素和半纤维素组成的复合型生物质纳米材料,近年来在先进功能材料的构筑及应用中展现出优异的表界面调控优势。然而,纳米综纤维素在制备和特性等方面的基础研究依然非常有限,限制了其应用的开发和拓展。本论文从纳米综纤维素的结构出发
学位
以食源性致病菌和真菌毒素为代表的食品生物性危害是威胁我国食品卫生和安全的重要因素,然而由于食品种类的多样性、成分的复杂性以及生产运输的时效性使实现快速精准定量检测成为目前食品生物性危害控制的研究难点。目前,细菌培养和液相-质谱联用作为食品检测的“金标准”存在着时效性差、操作繁琐和成本高等缺点,难以满足食品监管部门快速检测的要求。基于微机电系统(Micro-Electro-Mechanical Sy
学位
探索超重新核素的合成、结构和衰变是当前核物理研究的前沿课题。实验研究表明超重新核素可以通过熔合蒸发反应合成。但是,更重的超重元素和丰中子超重核的合成还面临着挑战,需要寻找更合理的反应机制。多核转移反应被认为是合成新的丰中子核的有效途径,对理解天体演化中的核合成也是非常有利的。本论文在双核模型的基础上,对熔合蒸发反应以及多核子转移反应进行了深入研究。论文主要分两个部分:第一部分是基于双核模型,通过熔
学位
微生物表面展示体系在生物技术和工业生产方面有着广泛的应用。谷氨酸棒杆菌能够生产多种化学品,具有鲁棒性强、可高密度发酵、可利用广泛的天然底物的特性,是一种有前途的表面展示宿主菌。谷氨酸棒杆菌展示酶在廉价生物质转化生产化学产品方面表现出良好的性能,是可再生生物制造领域的研究热点。然而,目前的谷氨酸棒杆菌的锚定蛋白数量和展示技术的研究尚处在初级阶段。本研究为了拓展谷氨酸棒杆菌表面展示体系的锚定蛋白的种类
学位
量子霍尔效应的发现拉开了物质拓扑相的研究序幕。在过去40年,对于拓扑相的探索不仅存在于电子系统中,也存在于各种人工周期性结构中。人工周期性结构系统能够模拟具有相同时空对称性的电子系统的各项性质,是探索物质拓扑性质的良好平台。迄今,拓扑绝缘体可分为一阶拓扑绝缘体与高阶拓扑绝缘体,其拓扑态均已在实验上得到了证实。本论文主要研究了二维Kagome系统中的拓扑绝缘体,包括声子晶体中的混合阶拓扑绝缘体、以及
学位
有机太阳能电池(OSCs)作为一种能够将清洁能源的太阳能转换成电能的新型装置,凭借其低廉价格、重量轻、卷对卷、印刷制造等优点而备受人们的关注。到目前为止,单结OSCs的光电转换效率(photovoltaic conversion efficiency,PCE)已超过19%。尽管各种新兴有机光敏材料的探索已经得到了显著的发展,但依然有一些关键的瓶颈需要解决。在活性层方面,有机材料的电荷输运性差、激子
学位
葡萄球菌(Staphylococcus)是常见的病原菌之一,也是临床重要的病原菌,其产生的肠毒素、溶血毒素等给人类健康造成重大危害。因此,加强对致病葡萄球菌尤其是金黄色葡萄球菌及其相关ST型的早期筛查及防控至关重要。分子诊断技术因检测成本低、效率高、特异性强、灵敏度高等特点广泛应用于食源性病原菌检测。然而分子靶标的特异性及数量是限制分子诊断技术的最大因素。因此,搭建高效的分子靶标挖掘平台并建立相应
学位