论文部分内容阅读
为了提高生产效率和降低制造成本,铁矿粉生产线关键装备及其工作部件不断大型化。其中,耐磨衬板是铁矿粉生产线关键装备——磨机的核心工作部件,其使用寿命直接影响整条铁矿粉生产线的运行效率和制造成本。然而,目前国内尚未形成超大型磨机的自主选材规范,致使我国超大型铁矿粉生产线项目的主要关键设备完全依赖进口,造成项目成本和进度受制于人。为了达到预期设计使用寿命,大型耐磨部件选材在具有较高硬度和强度的同时,应当具有优异的韧性和塑性以及良好的淬透性。因此,如何获得良好的强韧性匹配以及淬透性,进一步提高耐磨钢的耐磨性能,一直是研究者非常关注的课题。本文通过Ti、B和RE多元微合金化处理,设计了一系列新型中碳低合金耐磨钢,分析了Ti、B和RE对微观组织演变的影响,系统研究了在凝固和热处理过程中含Ti析出相和稀土夹杂物的类型、尺寸和分布,及其对组织和力学性能的影响,探讨了实验钢的磨损机理以及Ti和RE微合金化、力学性能与耐磨性能之间的关系。在此基础上,结合生产实际,实现了自主设计中碳低合金钢耐磨衬板铸件的批量化生产,为我国低合金耐磨钢的材料开发积累了宝贵经验,同时也为高品质耐磨部件的应用奠定了坚实的理论基础。本文的主要研究内容包括:(1)结合热力学计算和实验研究,提出了Ti、B和RE多元微合金化思想:通过微量B提高淬透性;加入适量Ti与钢中N结合,确保B对淬透性的作用,并且形成TiN析出相,细化组织;加入适量RE(La、Ce),净化钢液、改善夹杂、细化晶粒。由此,设计了新型中碳低合金耐磨钢合金体系。(2)采用热膨胀仪测定了实验钢的连续冷却转变(CCT)曲线,分析了Ti、B和RE多元微合金化对淬透性的影响。结果表明,实验钢中,单独加入B元素时,B易与钢中N结合,形成BN,严重削弱对淬透性的作用;并且,过量的B将促进M23(C,B)6型碳化物沿晶界析出,反而降低钢的淬透性。在此基础上,加入适量的Ti元素,能够有效固N,形成TiN析出相,抑制BN的产生,有利于发挥B显著提高淬透性的作用。然而,实验钢中加入RE元素,主要与钢液中O、S结合形成RE203和RE202S稀土夹杂物,对钢的淬透性基本没有影响。(3)通过固液两相区保温凝固和连续冷却凝固实验,研究了实验钢中TiN和稀土夹杂物的析出行为及其对凝固组织的影响。研究结果表明,等温凝固和水淬冷却后,实验钢中的TiN和稀土夹杂物主要分布于凝固组织的粗大枝晶间、枝晶前沿和最后凝固的等轴晶晶界处,少量分布于凝固组织的粗大枝晶和等轴晶内。低倍组织对比表明,加入Ti和RE元素,能够显著提高等轴晶比率,细化凝固组织。(4)系统研究了热处理后实验钢中含Ti析出相和稀土杂物的析出特征,并探讨了Ti、RE含量对晶粒尺寸和力学性能的影响。结果表明,随着Ti含量增加,实验钢中含Ti析出相颗粒尺寸增大、析出含量增多,析出相类别逐渐转变为微米级的Ti(C,N)和纳米级的(Ti,Mo)(C,N),具有明显的弥散强化、细晶强化和韧塑性改善作用。当Ti含量为0.021%时,实验钢综合力学性能最佳;随着Ti含量进一步增加,含Ti析出相在凝固初期形核并快速长大,导致析出相的颗粒尺寸和析出量明显升高,严重降低钢的冲击韧性。单独加入适量RE元素时,RE元素与钢液中的O、S结合,生成绝大部分小于1μm的RE2O3和RE202S稀士夹杂物,有效起到净化钢液和变质夹杂的作用,可以小幅提高钢的冲击韧性;但是,当RE元素与Ti元素复合微合金化时,稀土夹杂物极易作为钢中TiN的有效形核核心,促使TiN与其形成尺寸较大的微米级复合类型析出相,造成冲击韧性降低。(5)利用MLD-10型动载磨料磨损实验机,探讨了实验钢在冲击磨料磨损条件下的磨损机理,以及Ti和RE微合金化、力学性能与耐磨性能之间的关系。实验结果显示,在冲击磨料磨损条件下,实验钢磨损表面,除少量的显微切削磨损外,主要以塑性变形导致疲劳剥落磨损为主。在B微合金化基础上,实验钢中分别单独加入适量的Ti和RE元素,能够提高综合力学性能,从而一定程度提升耐磨性能。但是,将RE元素加入Ti和B微合金化的实验钢中,形成的粗大TiN-稀土夹杂物颗粒,在磨损过程中破碎,造成基体开裂,明显降低钢的耐磨性能。(6)在上述材料研究基础上,结合实际工况,制定了大型耐磨衬板选材成分规范、性能指标和全流程生产工艺。并且,采用电弧炉(EAF)-精炼炉(LF)-真空处理(VOD)冶炼技术,通过控制Ti、B和RE加入顺序,实现了自主设计中碳低合金钢耐磨衬板铸件的批量化生产,并且已经基本替代进口。使用结果显示,自主研制的大型耐磨衬板服役寿命达到75天,现有进口服役寿命为65天,提高15.4%。