有效介质理论在纳米线阵列近场辐射传热中适用性的研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:seed_weed1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
辐射传热有着无接触、零噪音的优势,但远场辐射相较热传导与热对流量级较小,因此在热控领域应用较少。但当物体间距小于其热特征波长时,两者间的辐射传热量可打破黑体辐射极限。若使用如硅纳米线阵列或多层薄膜等周期性超材料,辐射传热量将会进一步提升,可超过黑体极限数个量级。这一效应使得近场辐射传热在电子冷却、余热利用、热调控、热成像等方面有着广阔的运用前景。然而在计算复杂结构的辐射热通量时往往需要较多的时间成本,研究者们一般使用有效介质理论(EMT)将复杂结构等效成易于计算的各向异性板来进行计算从而减少时间成本。该理论在远场辐射中有着完善的适用条件,然而在近场辐射传热中由于倏逝波主导传热,使得原有的远场辐射传热的计算模式不再适用,因此近场辐射传热中有效介质理论的适用性问题引起了研究者们的关注,对丰富近场辐射传热的理论研究具有重要的科学意义。本文以探究有效介质理论在近场辐射中的适用性为目的。首先对使用多层结构电磁传热求解器(MESH)模拟计算纳米线阵列结构近场辐射传热量的参数及结果收敛性进行探究。使用结合严格耦合波分析法与散射矩阵法的波动电动力学框架求解无限长硅纳米线阵列近场辐射传热的半解析精确解,探究了半解析方法中三个参数——傅里叶级数展开阶数、波矢积分上限、波矢积分点数量对结果准确性的影响,给出了满足结果准确性而且时间成本较小的计算参数,分析了给定参数下辐射传热量计算结果的收敛性。本文探究了Maxwell-Garnett有效介质理论在近场辐射中的适用性。以兼具散射特性与衍射特性的硅纳米线阵列超材料为研究对象,使用有效介质理论将其等效成介电常数为各向异性的半无限大平板,通过波动电动力学结合并矢格林函数计算板的近场辐射传热半解析解作为有效介质理论近似解。以阵列间的空隙间距、阵列周期、填充率作为变量,对比多组不同变量组合下该硅纳米线阵列超材料间辐射总热通量的半解析精确解与近似解,发现有效介质理论在空隙间距与阵列周期比值大于3且填充率小于0.6时整体适用性较好。在较小间距下,有效介质理论在双曲模式或者表面等离极化激元单独主导传热时可以有很好的适用性,但当二者相互耦合共同主导传热时适应性较差。该工作对有效介质理论系统地应用于近场辐射传热的计算有着重要意义,能够在保证计算精度的同时减少运算时间。本文同时完成了近场辐射传热测量平台的设计与初步搭建,实现百纳米级精度的位移调控。通过结合电容传感器与高精度电动步进机的协同工作来实现硅片之间纳米尺度间距的调控。另外设计与加工了实验样品板,即发射体和接收体硅片,分析了实现测量平板间纳米级间距下近场辐射热通量的可行性。
其他文献
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)作为一种高效的全固态化学能-电能转换装置,在民用、军事等的分布式发电应用方面有广阔的应用前景,近年来得到广泛的关注。作为SOFC的重要组成部分,固态电解质材料在实际高温工况下发生的微观结构和机械性能变化会深刻的影响电池的性能和寿命。对其进行更加深入的研究能够为提高SOFC结构可靠性、延长其使用寿命提供重要的理论依据。氧化钇稳
学位
有限单元法是当今解决动力学建模问题的一种常用手段。然而受制于计算水平,直接求解一个具有庞大自由度规模的有限元模型仍然十分困难。工程中有大量具有几何对称性的结构,群论是处理对称性的数学工具,从上世纪60年代开始,研究者们开始将这一工具应用到工程领域,在简化模型,减小求解规模,提高计算效率等方面取得了十分显著的成果。除了几何方面的对称性,一个大型结构往往都是由多个子结构通过一定的连接方式组装起来的。子
学位
研究背景肝癌是世界第六大常见的恶性肿瘤,也是死亡率第三高的恶性肿瘤,严重威胁着人类健康。肝细胞癌(HCC)是肝癌最主要的组织学类型,由于其发病隐匿,许多HCC患者往往是在晚期才被诊断出来,临床预后普遍较差。因此,进一步了解肝癌发生和转移的分子机制是至关重要的。昼夜节律是指生物体的生命活动以24小时为周期的变动规律,它有助于机体更好地适应环境,昼夜节律紊乱与包括癌症在内的许多人类疾病有关。在哺乳动物
学位
浓度梯度对细胞生物学、分析化学以及材料合成等领域具有重要意义。微流控技术可以近似模拟细胞生长环境,生成的浓度梯度具有较小的特征尺度和较高的精度。黏度是控制生产流程、保证安全生产、进行医学诊断及科学研究的基础性数据,宏观的粘度测量方法已经不能满足各个领域高精度与高效快捷的黏度测量需求,因此利用微流控芯片建立化学物质浓度梯度和实现微液体的粘度测量,对微尺度水平的研究具有重要意义。微通道中浓度梯度的稳定
学位
在过去几十年间,随着经济的高速发展,环境问题也日益严峻,由空气污染引发的呼吸系统疾病成为人们关注的焦点之一。肺泡是呼吸系统的基本功能单元,进入人体的气流和颗粒物等在肺腺泡区域的运动机理都受肺泡内固有流场的影响,学者们长期致力于研究肺泡内的流场特点并试图揭示其中混沌流动现象的本质。现有的实验研究主要围绕单一肺泡中的流场特征,缺少在真实尺度下进行精确的动力学匹配的多级流场数据,对复杂结构下的肺泡流场特
学位
背景胃癌是我国高发恶性肿瘤,对其发生、发展的机制及改善不良预后的研究从未停止。中性粒细胞胞外诱捕网(Neutrophil extracellular traps,NETs)首先被发现在机体抗感染过程中发挥重要作用。而近年来多项研究证实NETs在恶性肿瘤中同样发挥特殊的作用,主要体现在促进肿瘤增殖、转移、侵袭和高凝状态。我们前期研究在胃癌组织微环境中检测出NETs的存在,发现胃癌组织微环境和外周血中
学位
以Zn O、Ga N为代表的纤锌矿材料,同时具有压电效应与半导体特性。作为第三代半导体的代表,压电半导体在智能传感、能量采集、柔性电子等领域具有广泛的应用前景。研究表明,利用外加应力产生的压电电势可以实现对半导体内部载流子输运特性的主动调控。实际工作中,压电半导体的尺寸常在微纳米级,这时压电半导体会表现出很强的挠曲电效应。除了压电电荷之外,挠曲电效应引起的极化电荷将会对半导体的电学性能产生显著的影
学位
Laplace方程和泊松方程的边界形状重建问题是重要的科学研究方向。但该问题具有不适定性:边界条件数据上引入很小的扰动都可能使得拟合的结果与实际边界形状产生较大偏差。同时,由于现实条件的限制,无法测量出准确的数据。因此,越来越多的学者关注如何稳定地重建Laplace方程和泊松方程的边界形状。基于小波的紧支撑性等良好的性质,线性方程组中的系数矩阵比其他方法的小很多,扰动几乎对结果没有影响。因此越来越
学位
能量稳态是机体维持正常的新陈代谢所必不可少的条件,能量的摄入大于消耗就会破坏能量稳态,从而导致代谢相关疾病的发生和发展。AMP激活蛋白激酶(AMP-activated protein kinase,AMPK)是能量稳态的主要调节蛋白,能够感知能量状态,在自身磷酸化水平被改变的同时,调节多种下游靶蛋白的活性从而控制代谢进程,这种磷酸化调控网络是精细而又复杂的,但是具体调控机制尚需进一步探索。Rab蛋
学位
细胞弹性的研究不仅为细胞生物学提供了新的视角,而且为基于细胞力学状态变化的疾病诊断提供了新的见解。基于单细胞之间形态学、增殖、生长潜力和对外部刺激的响应方面的高度异质性,单细胞的分析对生命科学和生物医学研究的意义重大。而将单细胞接种到单独的培养容器中是单细胞分析的关键要求之一,使单细胞分离打印技术展现出巨大的发展潜力。如果能在同一块芯片上结合细胞弹性测量和确定性的单细胞打印将极大的深化单细胞分析的
学位