论文部分内容阅读
铝及其合金因具有低密度、高比强度的特点以及良好的铸造和成型能力而被广泛应用于汽车、航空航天、生物医药以及军工等行业,但在腐蚀环境下耐蚀能力的不足制约了铝及其合金的进一步应用。研究发现,铝及其合金在经等离子电解氧化(PEO)技术改性处理后,表面形成的等离子电解氧化陶瓷膜层可以基本满足其在腐蚀环境下的使用要求。然而,因采用等离子电解氧化技术制备铝基PEO膜层的发展历史较短,且该技术具有膜层生长时过程复杂以及膜层生长受多重实验条件的影响等特点,使得学者们在对铝基PEO膜层组织结构演变以及膜层生长机理的认识和理解方面存在争议,这进一步制约了该技术在理论以及耐蚀性能优化与调控方面的发展速度。因此,探求PEO过程中铝基PEO陶瓷膜层组织结构演变规律以及膜层生长机理,将对后续PEO技术的理论发展以及铝基膜层的耐蚀性能优化与调控提供强有力的理论与技术支持。本文选用AA1060工业纯铝作为基体材料,以碱性硅酸钠电解液为基础电解液,通过改变时间、电源模式、电解液成分及PEO处理顺序等工艺条件,运用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和激光扫描共聚焦显微镜(LSCM)等观测分析技术以及电化学交流阻抗谱(EIS)和动电位极化曲线等耐蚀性能检测技术,结合电化学剥离PEO陶瓷膜层试样观测分析,重点研究纯铝基PEO膜层物相以及组织结构演变规律;在此基础上对PEO膜层形貌进行综合分析,并建立纯铝基PEO膜层生长模型;进一步分析耐蚀性能与PEO膜层物相和组织结构间的关系,并对比不同工艺下制备的PEO膜层耐蚀性能,以实现对铝基PEO膜层耐蚀性能的优化与调控。对不同工艺下制备的纯铝基PEO膜层物相和组织结构演变进行研究,结果表明,不同工艺下制备的纯铝基PEO膜层中均含有γ-Al2O3相。在E-Si电解液中,经恒流和恒压模式处理相对较长时间(10-30 min;594 V-30 m)制备的膜层中含有γ-Al2O3和莫来石相。在单步法和两步法工艺下,涉及在E-SiW电解液中制备的P2以及OS2-TS2膜层中含有γ-Al2O3和单质钨相。基于PEO膜层组织结构演变规律,对不同工艺下制备的纯铝基PEO膜层形貌进行综合分析,并建立纯铝基PEO膜层生长模型。结果表明,综合分析形貌可以将膜层表面、折断截面以及内表面SEM形貌中特征结构及其相应尺寸间的对应关系呈现出来。恒压模式PEO实验时,在阳极氧化阶段,阻挡型阳极氧化膜与纯铝箔基体界面上生成的亚微米半球结构,是由纯铝箔中的α-AlFeSi第二相颗粒与基体金属氧化速率不同引起的,且随电压增大,此类亚微米半球结构的平均直径逐渐增大(由0.27μm增至0.50μm);在火花放电阶段,PEO膜层与基体界面上生成的微半球结构,则是等离子放电作用在膜层/基体界面上的直接产物,随时间延长,对应微半球结构的尺寸基本维持不变(平均直径0.80μm)。纯铝基PEO膜层的演变过程为:由阳极氧化阶段的单层阻挡层阳极氧化膜,转变为火花放电初期阶段局部单层PEO膜层,再在II阶段转变为局部双层PEO膜层,随后在II阶段后期以及在III和IV阶段转变为完全双层PEO膜层结构。进一步对不同工艺下制备的纯铝基PEO膜层的耐蚀性能进行研究,结果表明,在E-Si电解液中对纯铝箔进行PEO处理时,与恒压模式相比,采用恒流模式容易获得具有较优抗腐蚀能力的PEO膜层,OS1的Rp值分别是594 V-8 m和是594 V-30 m对应Rp值的3.93倍以及4.10倍。在所有纯铝箔基PEO试样中,经E-SiW电解液处理制备的OS2试样耐蚀性能最优,其Rp值达到了1.27×108Ω·cm2。