【摘 要】
:
在隧道掘进过程中,全断面掘进机因其抗污染能力强、工作效率高等优点,在工作环境复杂、要求性能可靠、运行稳定的隧道掘进中具有广泛的应用。然而,全断面掘进机刀盘上的盘形滚刀作为直接切削岩石的主要部件,在复杂的工作环境中极易损坏,由于缺少完善的数学受力模型而使其损坏不易预测。因此,盘形滚刀主要依靠已有的经验来进行研发。本文基于仿真模拟方法建立TBM盘形滚刀破岩试验台,进行仿真并实验,为盘形滚刀的模型完善和
论文部分内容阅读
在隧道掘进过程中,全断面掘进机因其抗污染能力强、工作效率高等优点,在工作环境复杂、要求性能可靠、运行稳定的隧道掘进中具有广泛的应用。然而,全断面掘进机刀盘上的盘形滚刀作为直接切削岩石的主要部件,在复杂的工作环境中极易损坏,由于缺少完善的数学受力模型而使其损坏不易预测。因此,盘形滚刀主要依靠已有的经验来进行研发。本文基于仿真模拟方法建立TBM盘形滚刀破岩试验台,进行仿真并实验,为盘形滚刀的模型完善和优化设计提供参考。对TBM盘形滚刀破岩试验台的主机部分。首先,根据盘形滚刀的实际切削情况,给出了试验台的技术要求,由此确定了试验台的总体设计方案;根据设计方案,利用SolidWorks三维建模软件建立了试验台主机的总体机械结构模型,并对岩石试样座、垂向导向装置和滚刀架等主要零部件进行了单独介绍;最后,对整个试验台进行静力学仿真分析,获得了试验台整机的应力云图和应变云图,确定了设计的安全性和可行性。针对TBM盘形滚刀破岩试验台的液压控制系统部分。首先,根据试验台动作要求,设计了试验台垂向、纵向和横向液压控制回路;其次,为了验证可行性,利用AMESim系统仿真软件构建了三大回路的仿真模型,并给出了各自在输入信号下的动态响应曲线,验证了液压回路的可行性。论文关于盘形滚刀受力特性的实验研究,主要对不同实验条件下盘形滚刀切削岩石所受的力进行理论与实验研究。论文首先讨论了影响滚刀破岩力的切削因素贯入度和切削速度,并以花岗岩为实验材料,探究了盘形滚刀在不同贯入度、不同切削速度下的受力情况,对得到的实验数据进行分析整理,得出了盘形滚刀切削硬岩受力情况的一般结论,为盘形滚刀的模型完善和优化设计提供了理论支持。
其他文献
剪力墙作为高层及超高层建筑中重要的承重构件,不仅要承担较大的重力重力荷载,同时要抵抗水平地震作用。随着建筑高度的不断攀升,剪力墙受到的水平作用迅速增长,这要求剪力墙具有更高的承载力和更好的延性。基于此,组合剪力墙的的研究和发展应运而生,承载力高、延性好、易于施工的组合剪力墙对超高层建筑的发展至关重要。组合剪力墙通过对截面型式进行优化,能够充分发挥不同材料的优势,从而使剪力墙有着更好的力学性能和变形
Fe-Ga合金作为一种新型巨磁致伸缩材料,强度高、韧性好、饱和磁场低、磁致伸缩系数高、成本低,近年来受到人们的广泛关注。Fe-Ga合金在高频下使用会产生的严重涡流损耗,因此需要制成薄片使用;Fe-Ga合金的磁致伸缩性能具有显著的各向异性,通过二次再结晶来强化η织构是Fe-Ga合金薄带研究的主要内容。目前,添加抑制剂来获得Goss晶粒的二次再结晶,是提高Fe-Ga合金磁致伸缩的主要手段。本实验使用固
近年来,超声相控阵无损检测技术凭借其声束灵活控制等优势越来越受到人们的重视。虽然相控阵无损检测技术有诸多优点,但是各种技术都存在缺点,超声相控阵超声无损检测技术也不例外。由于波束形成技术的问题,使得超声相控阵全矩阵-全聚焦成像耗时长,且相控阵检测成像分辨率受到声波衍射的限制,造成了成像图像分辨率不高,存在栅瓣、旁瓣及伪像的问题,这些缺点限制了其在实际工业中的应用。针对这些问题,从波束合成技术入手,
镁合金室温塑性变形能力差,轧制过程中板带材易产生裂纹,极大影响了镁合金的应用前景。镁合金轧前加热及轧辊预热从而保持变形温度对提升镁合金板带材轧制变形能力至关重要。本文以AZ91镁合金为研究对象,利用高频感应加热技术对轧辊进行实时加热,通过轧辊热量输出保证带材变形温度。基于对轧后带材进行组织和力学性能的测试和分析,探索AZ91镁合金不同辊面温度、轧制道次、压下量轧制后组织演变和塑性行为。主要研究内容
目前,CFD计算分析在汽车领域应用越来越广泛,具有重要的理论意义和工程应用价值,在汽车行业的发展中,CFD的发展使得研发周期缩短,研发成本降低、CFD取代了以前的研发模式,取代了研发过程中由大量试验论证的过程,采用CFD仿真分析技术可以极大的降低试验过程,除霜分析属于汽车CFD领域的技术,CFD的发展使得除霜技术变得越来越先进,由此可以看出,CFD的发展给汽车除霜领域密切相关,是我们值得深入研究的
锆合金是核反应堆主要的结构材料,Nb、Mo、Sn、Fe是其重要合金元素。合金元素对锆合金性能影响取决于合金元素与锆的相互作用,多组元合金相图的建立,可为理解锆合金的组织随成分和温度的变化规律提供依据。论文利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析(EDS)等分别对Zr-Mo-Fe(O)富锆区的1000°C、900°C等温截面,以及Zr-Mo-Nb-Fe(O)体系在1000°C下
滤波器和天线作为射频前端电路的两个重要器件,其性能和尺寸对整个通信系统的正常工作起着决定性的作用。近年来,人们越来越重视通信系统的小型化,频谱资源也越来越珍贵和细分。由于频谱资源宝贵,所以研究者对天线系统的高频选择性提出了更高的要求。鉴于这些问题,将滤波器和天线进行综合设计展现出了较大的优势,成为当前天线领域的研究热点之一。近几年不断改进的滤波器天线理论,使其更容易地应用到多种传统天线结构设计中,
核聚变、核裂变和火力发电用耐热钢铁材料是能源领域重要的结构材料。托卡马克是聚变反应的最重要器件之一,其主要功能是利用强磁场约束等离子体实现可控聚变反应、释放聚变能。其包层结构材料低活化钢的服役环境是高温和强磁场的极端条件。它在长期服役环境下的性能变化、失效与破坏对核聚变反应堆的安全至关重要。合金碳化物是耐热钢中的重要组成相,其析出与演变对低活化钢等耐热钢的高温蠕变性能有极其重要的影响。钢的组织结构
节能减排和提高安全性是现代汽车的重要发展方向,要求新一代汽车用钢同时具有高强度和高塑性,在此背景下,国内外展开了对高强高塑性钢的研究工作。本课题针对常规钢种晶粒超细化、亚微米化条件下塑性降低的问题,提出采用中锰合金化,对超低碳中锰钢进行冷轧及两相区退火,利用Mn提高逆转变奥氏体稳定性,获得亚微米晶粒尺度的奥氏体-铁素体双相组织的研究思路,通过晶粒亚微米化提高强度、形变诱导奥氏体向马氏体转变提高加工
随着社会经济的进步,我国交通运输业更加发达。交通隧道作为铁路、公路系统的重要组成部分,对于缓解城市拥堵和改善山区交通条件具有重要作用。鉴于隧道与一般建筑的结构具有较大区别,在应对其火灾安全问题时也需要采用不同的手段。尽管隧道内安装的通风换气系统可在一定程度上控制高温有害气体的扩散,但从火灾发生到消防救援系统完全启动往往耗时较长甚至可能出现故障,期间有可能造成人员伤亡和财产损失。因此,如果可以在高温