一类带有消失势的Schr(?)dinger-Poisson系统基态解的存在性和渐近性

来源 :山西大学 | 被引量 : 0次 | 上传用户:xiaoxiao1946
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Schr(?)dinger-Poisson系统是物理学中被用来描述量子力学和半导体理论的基本方程,根据经典的物理模型,电荷粒子和电磁场的相互作用可以由薛定谔和泊松方程的耦合,此系统介绍了物理系统中的波函数随时间推移演变的过程.上述系统也经常出现在电磁波传播、光纤以及声学领域等诸多实际问题中.该系统在量子力学计算中得到了广泛的应用,对这些问题的研究将为非线性偏微分方程和变分理论的发展注入新的内容,创造新方法和新思想,推进非线性分析理论与应用的发展.自从1983年,Brezis和Nirenberg运用变分方法研究了一类带有临界指数的非线性椭圆方程解的存在性之后,很多数学家研究了带有临界指数的非线性偏微分方程,关键是克服紧性的缺失以及降低相应能量泛函在非紧性水平之下.消失性位势在证明解的渐近行为造成一定的困难.基于上述背景,本文讨论了一类带有消失势的Schr(?)dinger-Poisson系统基态解的存在性和渐近行为.本文共分为两章:第一章,绪论.主要介绍了 Schr(?)dinger-Poisson系统的研究背景与研究现状;提出了在研究带有消失势的Schr(?)dinger-Poisson系统基态解的存在性和渐近行为时所遇到的困难,并进一步说明了克服这些困难的方法.第二章,考虑了如下带有消失势的Schr(?)dinger-Poisson系统(?)基态解的存在性和渐近行为,其中ε>0,1<p<5.为此,我们作如下假设:(V1)V∈C(R3,R),V(x)≥0和V∞:=liminf|x|→∞V(x)>0;(V2)Z:={x∈R3|V(x)=0}≠0,不失一般性,设0∈Z;(V3)V-1{0}={0},当|x|→0,V(x)=|x|m+o(|x|m),其中 m>0.本文在(V1),(V2)成立的情形下,首先通过证明Iε满足山路结构,进一步根据Brezis-Lieb引理验证(PS)cε序列满足(PS)cε条件,进而得到了系统(0.1)基态解vε的存在性;其次通过运用强极大值原理给出关于vε的正则性.在(V1),(V3)成立的情形下,运用L∞估计研究基态解vε的渐近行为.
其他文献
在本文中,我们讨论在固定端x=0处具有Dirichlet边界条件,在移动端x=kt处具有边界反馈的波动方程.我们主要讨论具有移动边界反馈的一维波动方程的稳定性和分别在端点处、内点处的精确能观性.通过在加权L2-空间中,利用广义傅里叶级数和Parseval等式,导出了解的能量函数的精确多项式渐近稳定性.此外,还建立了解在端点处和内点处的精确能观性.每个点都显式地给出了能观常数.本文主要分为以下三章.
支撑杜芬系统是物理学研究中受欢迎的物体之一.日常生活中经常能够接触到此类系统,例如游乐场的大摆锤,桥梁的摩擦摆支座等.因此,对支撑杜芬系统进行响应研究,不断研究拓展新的理论方法,对于推动经济社会的发展进步具有非常大的理论意义和实际意义,具有非常广阔的研究背景.本文研究了窄带随机激励下支撑杜芬系统的动力学响应.建立了窄带随机激励下的支撑杜芬系统模型,给出系统的控制方程.首先对线性支撑杜芬系统进行响应
在这篇文章中我们主要研究两个问题.第一个问题主要研究一类具有非线性边界条件的拟线性抛物方程的爆破.第二个问题主要研究一类具有梯度项和非线性边界条件的多孔介质方程的爆破时刻估计.我们的研究主要依赖于构造辅助函数和使用一阶微分不等式技术.全文共分为三章.在第一章中,首先我们对非线性抛物方程的研究背景,意义和国内外的研究进展进行了简要概括,然后给出了本文所需要使用的抛物极值原理,Sobolev空间中的嵌
拟线性Schrodinger方程作为一类重要的非线性偏微分方程,在量子力学、流体学等领域起到很重要的作用.Choquard方程描述了电磁波在等离子体中的传播,并且在Bose-Einstein凝聚理论中扮演重要角色,在实际物理问题中都有重要应用,因此研究这些问题具有深刻的物理意义.关于拟线性Choquard型方程解的存在性、多重性以及集中性,引起了数学家们的广泛关注,由于拟线性项的存在,此类方程相应
非线性偏微分方程解的性质的研究一直都是一个热门的研究课题.非线性偏微分方程解的适定性、稳定性等的研究对于自然科学和现实生活的研究都具有重大意义.本文利用偏微分方程理论、乘子方法、伽辽金方法、能量方法等理论和方法,对粘弹性波方程进行了研究,得到了解的局部存在性,稳定性和爆破.本文分三章.第一章,主要介绍了具有时滞的波方程的发展和本文将进行的研究工作.第二章,考虑了在动力学边界条件下,具有时滞,Kel
在这篇论文中,我们研究具有临界增长的非齐次分数阶拉普拉斯问题的多重正解的存在性.即研究问题:其中s ∈(0,1),(-Δ)s是分数阶拉普拉斯算子,Ω(?)RN(N>2s)是一个有界光滑区域,p=2s*:=2N/N-2s是分数阶Sobolev指数,g∈C0(Ω),g(x)≥0(x∈Ω),且在Ω中,g(x)(?)0,λ≥ 0,γ>0.本文首先使用单调迭代法证明了当λ∈[0,λ1)时(特征值λ1为算子(
非线性偏微分方程作为现代数学中的一个重要分支,来源于自然科学及工程领域中出现的理论或实际问题.随着对客观事实的分析,学者们将自然现象抽象为数学模型.Kirchhoff型方程作为非线性偏微分方程中重要的一类方程,其解的存在性一直受到学者们的广泛关注.本文通过变分方法,极小极大原理,截断技术以及迭代技术等方法讨论Kirchhoff型方程解的存在性.本文分为三章.第一章,我们介绍Kirchhoff型方程
非线性偏微分方程是研究的热点领域,它在力学、化学以及控制学等方面有着广泛的应用.有关梁方程的初边值问题已被许多学者研究过,他们主要研究了解的适定性和爆破等性质,为今后研究梁方程奠定了深厚的基础.受之前文献的启发,本文研究了带有动力学边界条件的梁方程的初边值问题(?)第一章主要介绍了非线性偏微分方程的物理背景,动力学边界条件、时滞和源项这些因素的具体应用,还给出了预备知识.第二章,给出所研究系统的等
具有非局部反应声学边界条件的波动系统是一类重要的非线性偏微分耦合系统,这类模型在实际应用研究中多用于噪声的控制和抑制研究.因此,研究此类模型的控制问题具有重要的实际价值和理论意义.其中有关PDE系统一致稳定性的研究是这分布参数系统控制研究中的一个重要研究方向.本文在第二章研究了具有非局部反应声学边界条件的波动系统在内部时滞扰动下的一致稳定性.通过乘子法以及不等式的缩放技巧最终获得了相应非线性系统能
随着科学技术的发展,非线性矩阵方程在电路网络,弹性力学,热传导,震动等领域作为基本模型有许多应用,同时还可以作为不少数值方法处理过程中直接或间接转换的部分之一.因此,非线性矩阵方程具有广泛的应用背景,关于方程的求解也越来越受到人们的重视.本文包括三章:第一章是绪论部分,介绍非线性矩阵方程的研究背景与研究现状以及本文所用到的主要引理和定义.第二章主要利用单调算子的不动点定理和正规锥的性质讨论下列类型