论文部分内容阅读
分数阶微积分学推广了传统的整数阶微积分学,尽管它已有了300多年的历史,但其发展历程却是缓慢而曲折的。直到近几十年,分数阶微分方程理论才日益完善,在很多领域(如量子力学、随机扩散、控制论和金融学等)中得到了广泛应用。实践证明,用分数阶微分方程描述某些应用问题比用整数阶微分方程模型更加准确。延迟微分代数方程和分数阶(延迟)微分代数方程在许多领域(如生物学、自动控制、电磁学、电力系统以及国民经济研究等)中得到了广泛的应用。由于延迟微分代数方程和分数阶(延迟)微分代数方程具有时滞现象、记忆性和约束条件等属性,这就给其本身及其数值方法的研究带来了困难。近年来,学者们提出了几种求问题近似解析解的迭代算法,其中波形松弛方法因具有良好的并行性等优点已被广泛应用于各类科学工程领域。 本文主要利用波形松弛方法求解两类方程:线性延迟微分代数方程和线性分数阶(延迟)微分代数方程。在第一章,给出了延迟微分代数方程和分数阶微分方程的研究背景、现状。在第二章,给出了波形松弛法求解微分方程的几类常用迭代格式。在第三章,首先利用离散波形松弛方法求解线性延迟微分代数方程,其中采用了约束网格和方法来离散导数,并结合了分裂技术,证明了该方法的收敛性;然后,当对步长不作限制时,延迟项采用线性插值处理,仍用离散波形松弛方法求解线性延迟微分代数方程;最后,通过数值试验说明此方法的有效性。在第四章,应用离散波形松弛方法求解线性分数阶(延迟)微分代数方程,其中分数阶导数采用格式进行离散,同样给出收敛性证明,再通过数值算例说明理论的正确性。最后,对全文进行总结及展望。