【摘 要】
:
濒危动物的保护对维持生物多样性至关重要。如果无法有效保护濒危动物,可能会导致地球生态系统失衡。随着全球变暖的加剧,濒危动物栖息地的丧失,濒危动物的保护变得越来越严峻。如果能及时并准确地识别濒危动物个体,就可以长期跟踪了解动物及其种群的行为和生活状态,从而更加有效地保护它们。为了确定某一只动物的身份,目前常采用的方法有人工目视检查、收集动物的排泄物或生物学样本、在动物身上附着传感器或者在体内植入微电
论文部分内容阅读
濒危动物的保护对维持生物多样性至关重要。如果无法有效保护濒危动物,可能会导致地球生态系统失衡。随着全球变暖的加剧,濒危动物栖息地的丧失,濒危动物的保护变得越来越严峻。如果能及时并准确地识别濒危动物个体,就可以长期跟踪了解动物及其种群的行为和生活状态,从而更加有效地保护它们。为了确定某一只动物的身份,目前常采用的方法有人工目视检查、收集动物的排泄物或生物学样本、在动物身上附着传感器或者在体内植入微电子芯片等。然而,这些方法存在一定的局限性,比如人工比对繁琐复杂,传感器易出现故障,植入芯片会对动物造成损伤等。近年来,随着计算机技术的发展,科研人员开始将计算机视觉和图像处理技术应用于动物个体识别研究中,但这些方法一般基于特定动物的关键部位进行分析,图像采集的条件比较严苛,很难扩展到其他动物。此外,动物一般不会配合采集设备进行图像采集,使这些基于动物关键部位图像的动物个体识别方法难以实用,基于全身图像的动物个体识别方法可以很好地弥补这方面的不足。最后,濒危动物的个体数量相比普通动物更加稀少,可采集的图像数据相对有限,进一步增加了构建其识别模型的挑战性。针对以上问题和挑战,本文以东北虎和小熊猫两种具有一定代表性的濒危动物为研究对象,构建实用性更强的动物个体识别方案,主要工作和创新点如下:(1)收集并建立了动物图像数据库,其中包括鸟、猫、牛、鹿、狗、马、豹、猴、大熊猫、小熊猫、虎和羊等动物类别,共有13348张图像,每张图像均标注了目标框和动物物种信息,可用于物种检测模型的训练和测试。(2)以小熊猫为例,详细介绍了小熊猫全身图像数据采集和标注的过程,为其他濒危动物图像采集提供了参考。经比对筛选去重后,构建了小熊猫个体识别数据库(Red Panda),包括43只小熊猫个体的3491张图像。(3)针对东北虎个体识别,根据东北虎自身的特点,将东北虎的姿态简化为头朝左和头朝右两种姿态,并将姿态信息作为辅助任务监督卷积神经网络的学习,提出了姿态引导的互补特征学习(Tiger-PGCFL)方法。在东北虎个体识别数据库(ATRW)上的实验结果证明了该方法优于现有方法。(4)针对小熊猫个体识别,研究发现小熊猫面部和尾巴区域的判别性较高,基于此设计了小熊猫数据增强方法弥补数据不足的缺陷。同时将小熊猫的姿态简化为面部是否可见和尾巴是否可见,作为辅助任务监督卷积神经网络的学习,形成了面向小熊猫的姿态引导互补特征学习(Red Panda-PGCFL)方法。在小熊猫个体识别数据库(Red Panda)上的实验结果证明了该方法优于现有方法。
其他文献
叶片是航空发动机、燃气轮机等动力机械中的重要零件,其型面的加工质量严重影响着整机的工作性能,因此对其型面轮廓进行检测是十分必要的。叶片型面一般为变截面的扭转曲面,同时型面曲率变化较大,具有较大的检测难度。传统三坐标测量法通过获取叶片型面特定截面的轮廓数据评价出叶片加工质量,适用于精加工叶片的检测,无法反映出叶片整体的尺寸偏差,同时对检测环境具有较高的要求,无法实现叶片在线检测。随着光学测量技术的发
由于航空发动机机体结构复杂,具有拆装难、维修不易的特点,新手操作者对各种发动机零件类型的不熟悉,在航空发动机换发领域存在培训难上手、实践成本高等问题,因此,常利用目标检测方法对零件类型进行分类检测。但由于实际环境中零件堆放杂乱,容易出现遮挡的情况,利用传统的单一目标二维识别方法会因为无法提取足够的特征信息,易出现错误的检测结果,无法满足需求;同时,传统的换发培训流程是基于纸质或电子文档,培训效率较
随着网络规模的增大和新型网络应用的不断出现,网络流量呈指数级增长,如何根据网络的状态和需求找到一种实时的自适应的智能路由是提高网络资源利用和服务质量的关键。SDN(Software Defined Networks)的出现提供了灵活高效的网络控制,降低了路由优化的难度。数据驱动的方法适应并优化了网络的实际状态,随着机器学习在很多领域取得了非常不错的进展,许多研究者开始尝试使用机器学习来解决路由优化
三维人脸重建技术逐渐开始受到学者们的关注并在安防、医疗美容、影视娱乐等多个领域进行应用。目前三维采集需要通过昂贵的专业三维采集设备且需要较长的采集时间,而基于单张照片的三维人脸重建技术具有只需要用手机就能对人脸进行采集的优点。目前基于二维人脸照片进行三维人脸重建的算法生成三维人脸模型不能很好的表示人脸的细节信息,如皱纹等。对于以上问题,本文提出一种利用卷积神经网络对单张人脸照片重建出具有细节信息的
近年来随着5G、云计算、物联网的快速发展,各种网络应用层出不穷,网络规模不断扩大,网络流量爆发式增长。如何通过对网络流量的合理调度,避免网络拥塞,提高网络资源利用率,保证用户体验质量,越来越成为网络领域需要重点研究的问题。随着SDN网络架构的提出和对网络数据收集、分析能力的增强,再加之深度学习与深度强化学习在自适应学习、自动控制等领域的突破性进展,为可实时适应网络变化的动态、智能流量调度方法的实现
飞行模拟机在民航飞行员及相关从业人员的培训中具有极其重要的作用,可以显著的降低训练成本和提高训练安全性。飞行教员带领学员使用模拟机训练,一般按照训练清单进行逐项练习,根据训练大纲和个人经验对学员的表现进行评分,随后根据学员的分数安排后续训练。但是面对大量的考核项目,教员的评分容易受到疲劳和个人主观因素的影响,由此造成的评估偏差不利于受训人员水平的提高,造成大量的人力物力损失。现有解决此类问题的方法
在人脸识别领域,由于人脸数据易于获取的特点,使得人脸识别系统容易受到演示攻击,所以需要利用人脸活体检测技术对演示攻击进行防御。人脸活体检测技术通过检测并过滤伪造的攻击图像,达到抵御攻击的目的,从而避免人脸识别系统被攻破而造成的不必要的损失。本文首先从人脸活体检测数据集开展研究,针对现有数据集存在的一些问题,提出了一种多模态人脸活体检测数据集构建方案。然后在此基础上对基于深度学习的人脸活体检测算法进
飞行模拟机是用于训练飞行过程的产品,系统通过逼真地模拟,提供一个接近真实的飞行训练环境,达到训练飞行驾驶操作的目的,系统主要由飞行系统、飞机系统和视景系统等组成。其中,视景系统需要极高的实时交互性和稳定性,而视景系统中大量三维模型数据处理及各种视景特效处理算法都极其消耗系统存储资源和计算资源,这大大影响了系统的实时性与稳定性,给视景渲染带来了极大压力。虽然目前的显卡在硬件级别上能对三维渲染进行一定
随着数字媒体技术的普及和计算机视觉领域的快速发展,平面目标跟踪作为一种重要三维跟踪技术已被广泛应用于三维重建、军事制导以及无人机等多个技术领域。尽管众多研究者在该领域已经取得了丰硕的研究成果,但仍存在诸多问题尚未解决。例如,在背景复杂或者在视点快速移动的场景中,视频图像中纹理重复或者缺失会导致所提取的关键点特征信息不准确;超出视野或遮挡等场景容易造成基于区域的方法失效;视点快速移动则会引起跟踪目标
在互联网时代,Web应用发展迅猛并且正在成为许多领域的核心业务,是信息共享和资源获取的重要载体,其安全性和可靠性也成为了许多企业和研究者重点关注的问题。Web应用中的交互通常强烈依赖于用户的交互式输入,并且由于编程人员的经验不足或安全意识的缺失导致了输入约束漏洞,而这个漏洞常常导致应用程序被网络攻击,造成信息泄露和系统破坏等不可估量的损失。随着Web应用客户端计算功能的强大和用户对实时信息与实时互